IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/815352.html
   My bibliography  Save this article

A New Approach to Fault Diagnosis of Power Systems Using Fuzzy Reasoning Spiking Neural P Systems

Author

Listed:
  • Guojiang Xiong
  • Dongyuan Shi
  • Lin Zhu
  • Xianzhong Duan

Abstract

Fault diagnosis of power systems is an important task in power system operation. In this paper, fuzzy reasoning spiking neural P systems (FRSN P systems) are implemented for fault diagnosis of power systems for the first time. As a graphical modeling tool, FRSN P systems are able to represent fuzzy knowledge and perform fuzzy reasoning well. When the cause-effect relationship between candidate faulted section and protective devices is represented by the FRSN P systems, the diagnostic conclusion can be drawn by means of a simple parallel matrix based reasoning algorithm. Three different power systems are used to demonstrate the feasibility and effectiveness of the proposed fault diagnosis approach. The simulations show that the developed FRSN P systems based diagnostic model has notable characteristics of easiness in implementation, rapidity in parallel reasoning, and capability in handling uncertainties. In addition, it is independent of the scale of power system and can be used as a reliable tool for fault diagnosis of power systems.

Suggested Citation

  • Guojiang Xiong & Dongyuan Shi & Lin Zhu & Xianzhong Duan, 2013. "A New Approach to Fault Diagnosis of Power Systems Using Fuzzy Reasoning Spiking Neural P Systems," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-13, June.
  • Handle: RePEc:hin:jnlmpe:815352
    DOI: 10.1155/2013/815352
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2013/815352.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2013/815352.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/815352?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xiangyu & Xiong, Guojiang & Mirjalili, Seyedali, 2024. "Accurate fault section diagnosis of power systems with a binary adaptive quadratic interpolation learning differential evolution," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    2. Zixia Yuan & Guojiang Xiong & Xiaofan Fu, 2022. "Artificial Neural Network for Fault Diagnosis of Solar Photovoltaic Systems: A Survey," Energies, MDPI, vol. 15(22), pages 1-18, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:815352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.