IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i14p4140-d591167.html
   My bibliography  Save this article

Fault Detection and Diagnosis Method of Distributed Photovoltaic Array Based on Fine-Tuning Naive Bayesian Model

Author

Listed:
  • Weiguo He

    (School of Automation, Southeast University, Nanjing 210096, China)

  • Deyang Yin

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Kaifeng Zhang

    (School of Automation, Southeast University, Nanjing 210096, China)

  • Xiangwen Zhang

    (China Electric Power Research Institute, Nanjing 210003, China)

  • Jianyong Zheng

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

Abstract

With the widespread attention and research of distributed photovoltaic (PV) systems, the fault detection and diagnosis problems of distributed PV systems has become increasingly prominent. To this end, a distributed PV array fault diagnosis method based on fine-tuning Naive Bayes model for the fault conditions of PV array such as open-circuit, short-circuit, shading, abnormal degradation, and abnormal bypass diode is proposed. First, in view of the problem of less distributed PV fault data, a fine-tuning Naive Bayes model (FTNB) is proposed to improve the diagnosis accuracy. Second, the failure sample set is used to train the model. Then, the maximum power point data of the PV inverter and the meteorological data are collected for fault diagnosis. Finally, the effectiveness and accuracy of the proposed method are verified by the analysis of simulation. In addition, this method requires only a small number of fault sample sets and no additional measurement equipment is required, which is suitable for real-time monitoring of distributed PV systems.

Suggested Citation

  • Weiguo He & Deyang Yin & Kaifeng Zhang & Xiangwen Zhang & Jianyong Zheng, 2021. "Fault Detection and Diagnosis Method of Distributed Photovoltaic Array Based on Fine-Tuning Naive Bayesian Model," Energies, MDPI, vol. 14(14), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4140-:d:591167
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/14/4140/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/14/4140/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mellit, A. & Tina, G.M. & Kalogirou, S.A., 2018. "Fault detection and diagnosis methods for photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1-17.
    2. Peinado Gonzalo, Alfredo & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2020. "Survey of maintenance management for photovoltaic power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Hussain, Muhammed & Dhimish, Mahmoud & Titarenko, Sofya & Mather, Peter, 2020. "Artificial neural network based photovoltaic fault detection algorithm integrating two bi-directional input parameters," Renewable Energy, Elsevier, vol. 155(C), pages 1272-1292.
    4. Chine, W. & Mellit, A. & Lughi, V. & Malek, A. & Sulligoi, G. & Massi Pavan, A., 2016. "A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks," Renewable Energy, Elsevier, vol. 90(C), pages 501-512.
    5. Chen, Zhicong & Wu, Lijun & Cheng, Shuying & Lin, Peijie & Wu, Yue & Lin, Wencheng, 2017. "Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and I-V characteristics," Applied Energy, Elsevier, vol. 204(C), pages 912-931.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lina Wang & Ehtisham Lodhi & Pu Yang & Hongcheng Qiu & Waheed Ur Rehman & Zeeshan Lodhi & Tariku Sinshaw Tamir & M. Adil Khan, 2022. "Adaptive Local Mean Decomposition and Multiscale-Fuzzy Entropy-Based Algorithms for the Detection of DC Series Arc Faults in PV Systems," Energies, MDPI, vol. 15(10), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, B. & Delpha, C. & Diallo, D. & Migan-Dubois, A., 2021. "Application of Artificial Neural Networks to photovoltaic fault detection and diagnosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Mellit, Adel & Kalogirou, Soteris, 2022. "Assessment of machine learning and ensemble methods for fault diagnosis of photovoltaic systems," Renewable Energy, Elsevier, vol. 184(C), pages 1074-1090.
    3. Sairam, Seshapalli & Seshadhri, Subathra & Marafioti, Giancarlo & Srinivasan, Seshadhri & Mathisen, Geir & Bekiroglu, Korkut, 2022. "Edge-based Explainable Fault Detection Systems for photovoltaic panels on edge nodes," Renewable Energy, Elsevier, vol. 185(C), pages 1425-1440.
    4. Li, Yuanliang & Ding, Kun & Zhang, Jingwei & Chen, Fudong & Chen, Xiang & Wu, Jiabing, 2019. "A fault diagnosis method for photovoltaic arrays based on fault parameters identification," Renewable Energy, Elsevier, vol. 143(C), pages 52-63.
    5. Sunme Park & Soyeong Park & Myungsun Kim & Euiseok Hwang, 2020. "Clustering-Based Self-Imputation of Unlabeled Fault Data in a Fleet of Photovoltaic Generation Systems," Energies, MDPI, vol. 13(3), pages 1-16, February.
    6. Zixia Yuan & Guojiang Xiong & Xiaofan Fu, 2022. "Artificial Neural Network for Fault Diagnosis of Solar Photovoltaic Systems: A Survey," Energies, MDPI, vol. 15(22), pages 1-18, November.
    7. Van Gompel, Jonas & Spina, Domenico & Develder, Chris, 2023. "Cost-effective fault diagnosis of nearby photovoltaic systems using graph neural networks," Energy, Elsevier, vol. 266(C).
    8. Belaout, A. & Krim, F. & Mellit, A. & Talbi, B. & Arabi, A., 2018. "Multiclass adaptive neuro-fuzzy classifier and feature selection techniques for photovoltaic array fault detection and classification," Renewable Energy, Elsevier, vol. 127(C), pages 548-558.
    9. Livera, Andreas & Theristis, Marios & Makrides, George & Georghiou, George E., 2019. "Recent advances in failure diagnosis techniques based on performance data analysis for grid-connected photovoltaic systems," Renewable Energy, Elsevier, vol. 133(C), pages 126-143.
    10. Heinrich, Matthias & Meunier, Simon & Samé, Allou & Quéval, Loïc & Darga, Arouna & Oukhellou, Latifa & Multon, Bernard, 2020. "Detection of cleaning interventions on photovoltaic modules with machine learning," Applied Energy, Elsevier, vol. 263(C).
    11. Mellit, Adel & Kalogirou, Soteris, 2021. "Artificial intelligence and internet of things to improve efficacy of diagnosis and remote sensing of solar photovoltaic systems: Challenges, recommendations and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    12. Van Gompel, Jonas & Spina, Domenico & Develder, Chris, 2022. "Satellite based fault diagnosis of photovoltaic systems using recurrent neural networks," Applied Energy, Elsevier, vol. 305(C).
    13. Arturo Y. Jaen-Cuellar & David A. Elvira-Ortiz & Roque A. Osornio-Rios & Jose A. Antonino-Daviu, 2022. "Advances in Fault Condition Monitoring for Solar Photovoltaic and Wind Turbine Energy Generation: A Review," Energies, MDPI, vol. 15(15), pages 1-36, July.
    14. Kara Mostefa Khelil, Chérifa & Amrouche, Badia & Benyoucef, Abou soufiane & Kara, Kamel & Chouder, Aissa, 2020. "New Intelligent Fault Diagnosis (IFD) approach for grid-connected photovoltaic systems," Energy, Elsevier, vol. 211(C).
    15. Hong, Ying-Yi & Pula, Rolando A., 2022. "Detection and classification of faults in photovoltaic arrays using a 3D convolutional neural network," Energy, Elsevier, vol. 246(C).
    16. Wang, Mengyuan & Xu, Xiaoyuan & Yan, Zheng, 2023. "Online fault diagnosis of PV array considering label errors based on distributionally robust logistic regression," Renewable Energy, Elsevier, vol. 203(C), pages 68-80.
    17. Thitiphat Klinsuwan & Wachiraphong Ratiphaphongthon & Rabian Wangkeeree & Rattanaporn Wangkeeree & Chatchai Sirisamphanwong, 2023. "Evaluation of Machine Learning Algorithms for Supervised Anomaly Detection and Comparison between Static and Dynamic Thresholds in Photovoltaic Systems," Energies, MDPI, vol. 16(4), pages 1-22, February.
    18. Mellit, A. & Tina, G.M. & Kalogirou, S.A., 2018. "Fault detection and diagnosis methods for photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1-17.
    19. Qamar Navid & Ahmed Hassan & Abbas Ahmad Fardoun & Rashad Ramzan & Abdulrahman Alraeesi, 2021. "Fault Diagnostic Methodologies for Utility-Scale Photovoltaic Power Plants: A State of the Art Review," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    20. Luis D. Murillo-Soto & Carlos Meza, 2021. "Automated Fault Management System in a Photovoltaic Array: A Reconfiguration-Based Approach," Energies, MDPI, vol. 14(9), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4140-:d:591167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.