IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v266y2023ics0360544222033308.html
   My bibliography  Save this article

Cost-effective fault diagnosis of nearby photovoltaic systems using graph neural networks

Author

Listed:
  • Van Gompel, Jonas
  • Spina, Domenico
  • Develder, Chris

Abstract

The energy losses and costs associated with faults in photovoltaic (PV) systems significantly limit the efficiency and reliability of solar power. Since existing methods for automatic fault diagnosis require expensive sensors, they are only cost-effective for large-scale systems. To address these drawbacks, we propose a fault diagnosis model based on graph neural networks (GNNs), which monitors a group of PV systems by comparing their current and voltage production over the last 24h. This methodology allows for monitoring PV systems without sensors, as hourly measurements of the produced current and voltage are obtained via the PV systems’ inverters. Comprehensive experiments are conducted by simulating 6 different PV systems in Colorado using 6 years of real weather measurements. Despite large variations in number of modules, module type, orientation, location, etc., the GNN can accurately detect and identify early occurrences of 6 common faults. Specifically, the GNN reaches 84.6%±2.1% accuracy without weather data and 87.5%±1.6% when satellite weather estimates are provided, significantly outperforming two state-of-the-art PV fault diagnosis models. Moreover, the results suggest that GNN can generalize to PV systems it was not trained on and retains high accuracy when multiple PV systems are simultaneously affected by faults.

Suggested Citation

  • Van Gompel, Jonas & Spina, Domenico & Develder, Chris, 2023. "Cost-effective fault diagnosis of nearby photovoltaic systems using graph neural networks," Energy, Elsevier, vol. 266(C).
  • Handle: RePEc:eee:energy:v:266:y:2023:i:c:s0360544222033308
    DOI: 10.1016/j.energy.2022.126444
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222033308
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126444?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kapucu, Ceyhun & Cubukcu, Mete, 2021. "A supervised ensemble learning method for fault diagnosis in photovoltaic strings," Energy, Elsevier, vol. 227(C).
    2. Mellit, A. & Tina, G.M. & Kalogirou, S.A., 2018. "Fault detection and diagnosis methods for photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1-17.
    3. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    4. Pillai, Dhanup S. & Rajasekar, N., 2018. "A comprehensive review on protection challenges and fault diagnosis in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 18-40.
    5. Madeti, Siva Ramakrishna & Singh, S.N., 2017. "Online fault detection and the economic analysis of grid-connected photovoltaic systems," Energy, Elsevier, vol. 134(C), pages 121-135.
    6. Jack B Maguire & Daniele Grattarola & Vikram Khipple Mulligan & Eugene Klyshko & Hans Melo, 2021. "XENet: Using a new graph convolution to accelerate the timeline for protein design on quantum computers," PLOS Computational Biology, Public Library of Science, vol. 17(9), pages 1-21, September.
    7. Van Gompel, Jonas & Spina, Domenico & Develder, Chris, 2022. "Satellite based fault diagnosis of photovoltaic systems using recurrent neural networks," Applied Energy, Elsevier, vol. 305(C).
    8. Chine, W. & Mellit, A. & Lughi, V. & Malek, A. & Sulligoi, G. & Massi Pavan, A., 2016. "A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks," Renewable Energy, Elsevier, vol. 90(C), pages 501-512.
    9. Chen, Zhicong & Wu, Lijun & Cheng, Shuying & Lin, Peijie & Wu, Yue & Lin, Wencheng, 2017. "Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and I-V characteristics," Applied Energy, Elsevier, vol. 204(C), pages 912-931.
    10. Livera, Andreas & Theristis, Marios & Makrides, George & Georghiou, George E., 2019. "Recent advances in failure diagnosis techniques based on performance data analysis for grid-connected photovoltaic systems," Renewable Energy, Elsevier, vol. 133(C), pages 126-143.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vladimir Franki & Darin Majnarić & Alfredo Višković, 2023. "A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector," Energies, MDPI, vol. 16(3), pages 1-35, January.
    2. Xing, Zhizhong & Zhao, Shuanfeng & Guo, Wei & Meng, Fanyuan & Guo, Xiaojun & Wang, Shenquan & He, Haitao, 2023. "Coal resources under carbon peak: Segmentation of massive laser point clouds for coal mining in underground dusty environments using integrated graph deep learning model," Energy, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joshuva Arockia Dhanraj & Ali Mostafaeipour & Karthikeyan Velmurugan & Kuaanan Techato & Prem Kumar Chaurasiya & Jenoris Muthiya Solomon & Anitha Gopalan & Khamphe Phoungthong, 2021. "An Effective Evaluation on Fault Detection in Solar Panels," Energies, MDPI, vol. 14(22), pages 1-14, November.
    2. Van Gompel, Jonas & Spina, Domenico & Develder, Chris, 2022. "Satellite based fault diagnosis of photovoltaic systems using recurrent neural networks," Applied Energy, Elsevier, vol. 305(C).
    3. Li, B. & Delpha, C. & Diallo, D. & Migan-Dubois, A., 2021. "Application of Artificial Neural Networks to photovoltaic fault detection and diagnosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    4. Qu, Jiaqi & Sun, Qiang & Qian, Zheng & Wei, Lu & Zareipour, Hamidreza, 2024. "Fault diagnosis for PV arrays considering dust impact based on transformed graphical features of characteristic curves and convolutional neural network with CBAM modules," Applied Energy, Elsevier, vol. 355(C).
    5. Li, Yuanliang & Ding, Kun & Zhang, Jingwei & Chen, Fudong & Chen, Xiang & Wu, Jiabing, 2019. "A fault diagnosis method for photovoltaic arrays based on fault parameters identification," Renewable Energy, Elsevier, vol. 143(C), pages 52-63.
    6. Nien-Che Yang & Harun Ismail, 2022. "Voting-Based Ensemble Learning Algorithm for Fault Detection in Photovoltaic Systems under Different Weather Conditions," Mathematics, MDPI, vol. 10(2), pages 1-18, January.
    7. Belaout, A. & Krim, F. & Mellit, A. & Talbi, B. & Arabi, A., 2018. "Multiclass adaptive neuro-fuzzy classifier and feature selection techniques for photovoltaic array fault detection and classification," Renewable Energy, Elsevier, vol. 127(C), pages 548-558.
    8. Livera, Andreas & Theristis, Marios & Makrides, George & Georghiou, George E., 2019. "Recent advances in failure diagnosis techniques based on performance data analysis for grid-connected photovoltaic systems," Renewable Energy, Elsevier, vol. 133(C), pages 126-143.
    9. Mellit, Adel & Kalogirou, Soteris, 2022. "Assessment of machine learning and ensemble methods for fault diagnosis of photovoltaic systems," Renewable Energy, Elsevier, vol. 184(C), pages 1074-1090.
    10. Belqasem Aljafari & Siva Rama Krishna Madeti & Priya Ranjan Satpathy & Sudhakar Babu Thanikanti & Bamidele Victor Ayodele, 2022. "Automatic Monitoring System for Online Module-Level Fault Detection in Grid-Tied Photovoltaic Plants," Energies, MDPI, vol. 15(20), pages 1-28, October.
    11. Bakdi, Azzeddine & Bounoua, Wahiba & Mekhilef, Saad & Halabi, Laith M., 2019. "Nonparametric Kullback-divergence-PCA for intelligent mismatch detection and power quality monitoring in grid-connected rooftop PV," Energy, Elsevier, vol. 189(C).
    12. Li, Chenxi & Yang, Yongheng & Spataru, Sergiu & Zhang, Kanjian & Wei, Haikun, 2021. "A robust parametrization method of photovoltaic modules for enhancing one-diode model accuracy under varying operating conditions," Renewable Energy, Elsevier, vol. 168(C), pages 764-778.
    13. Bilal Taghezouit & Fouzi Harrou & Cherif Larbes & Ying Sun & Smail Semaoui & Amar Hadj Arab & Salim Bouchakour, 2022. "Intelligent Monitoring of Photovoltaic Systems via Simplicial Empirical Models and Performance Loss Rate Evaluation under LabVIEW: A Case Study," Energies, MDPI, vol. 15(21), pages 1-30, October.
    14. Fouad Suliman & Fatih Anayi & Michael Packianather, 2024. "Electrical Faults Analysis and Detection in Photovoltaic Arrays Based on Machine Learning Classifiers," Sustainability, MDPI, vol. 16(3), pages 1-29, January.
    15. Heinrich, Matthias & Meunier, Simon & Samé, Allou & Quéval, Loïc & Darga, Arouna & Oukhellou, Latifa & Multon, Bernard, 2020. "Detection of cleaning interventions on photovoltaic modules with machine learning," Applied Energy, Elsevier, vol. 263(C).
    16. Mellit, Adel & Kalogirou, Soteris, 2021. "Artificial intelligence and internet of things to improve efficacy of diagnosis and remote sensing of solar photovoltaic systems: Challenges, recommendations and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    17. Selma Tchoketch Kebir & Nawal Cheggaga & Adrian Ilinca & Sabri Boulouma, 2021. "An Efficient Neural Network-Based Method for Diagnosing Faults of PV Array," Sustainability, MDPI, vol. 13(11), pages 1-27, May.
    18. Wang, Haizheng & Zhao, Jian & Sun, Qian & Zhu, Honglu, 2019. "Probability modeling for PV array output interval and its application in fault diagnosis," Energy, Elsevier, vol. 189(C).
    19. Ramadoss Janarthanan & R. Uma Maheshwari & Prashant Kumar Shukla & Piyush Kumar Shukla & Seyedali Mirjalili & Manoj Kumar, 2021. "Intelligent Detection of the PV Faults Based on Artificial Neural Network and Type 2 Fuzzy Systems," Energies, MDPI, vol. 14(20), pages 1-19, October.
    20. Michael W. Hopwood & Joshua S. Stein & Jennifer L. Braid & Hubert P. Seigneur, 2022. "Physics-Based Method for Generating Fully Synthetic IV Curve Training Datasets for Machine Learning Classification of PV Failures," Energies, MDPI, vol. 15(14), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:266:y:2023:i:c:s0360544222033308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.