IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v162y2020icp249-256.html
   My bibliography  Save this article

Failure signature classification in solar photovoltaic plants using RGB images and convolutional neural networks

Author

Listed:
  • Rico Espinosa, Alejandro
  • Bressan, Michael
  • Giraldo, Luis Felipe

Abstract

Physical fault detection in panels that are part of photovoltaic (PV) plants typically involves the analysis of thermal and electroluminescent images, which makes it either difficult or impossible to identify the source of the fault in the plant. This paper proposes a method of automatic physical fault classification for PV plants using convolutional neural networks for semantic segmentation and classification from RGB images. This study shows experimental results for 2 output classes identified as a fault and no fault, and 4 output classes as no fault, cracks, shadows, and dust that cannot be easily detected. The proposed method presents an average accuracy of 75% for 2 output classes and 70% for 4 classes, showing a positive approach to the proposed classification method for PV systems.

Suggested Citation

  • Rico Espinosa, Alejandro & Bressan, Michael & Giraldo, Luis Felipe, 2020. "Failure signature classification in solar photovoltaic plants using RGB images and convolutional neural networks," Renewable Energy, Elsevier, vol. 162(C), pages 249-256.
  • Handle: RePEc:eee:renene:v:162:y:2020:i:c:p:249-256
    DOI: 10.1016/j.renene.2020.07.154
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120312301
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.07.154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bressan, M. & Gutierrez, A. & Garcia Gutierrez, L. & Alonso, C., 2018. "Development of a real-time hot-spot prevention using an emulator of partially shaded PV systems," Renewable Energy, Elsevier, vol. 127(C), pages 334-343.
    2. Dong Ji & Cai Zhang & Mingsong Lv & Ye Ma & Nan Guan, 2017. "Photovoltaic Array Fault Detection by Automatic Reconfiguration," Energies, MDPI, vol. 10(5), pages 1-13, May.
    3. Pillai, Dhanup S. & Rajasekar, N., 2018. "A comprehensive review on protection challenges and fault diagnosis in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 18-40.
    4. d'Alessandro, Vincenzo & Di Napoli, Fabio & Guerriero, Pierluigi & Daliento, Santolo, 2015. "An automated high-granularity tool for a fast evaluation of the yield of PV plants accounting for shading effects," Renewable Energy, Elsevier, vol. 83(C), pages 294-304.
    5. Maghami, Mohammad Reza & Hizam, Hashim & Gomes, Chandima & Radzi, Mohd Amran & Rezadad, Mohammad Ismael & Hajighorbani, Shahrooz, 2016. "Power loss due to soiling on solar panel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1307-1316.
    6. Bressan, M. & El Basri, Y. & Galeano, A.G. & Alonso, C., 2016. "A shadow fault detection method based on the standard error analysis of I-V curves," Renewable Energy, Elsevier, vol. 99(C), pages 1181-1190.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cavieres, Robinson & Barraza, Rodrigo & Estay, Danilo & Bilbao, José & Valdivia-Lefort, Patricio, 2022. "Automatic soiling and partial shading assessment on PV modules through RGB images analysis," Applied Energy, Elsevier, vol. 306(PA).
    2. Mellit, Adel & Kalogirou, Soteris, 2022. "Assessment of machine learning and ensemble methods for fault diagnosis of photovoltaic systems," Renewable Energy, Elsevier, vol. 184(C), pages 1074-1090.
    3. G R Venkatakrishnan & R Rengaraj & S Tamilselvi & J Harshini & Ansheela Sahoo & C Ahamed Saleel & Mohamed Abbas & Erdem Cuce & C Jazlyn & Saboor Shaik & Pinar Mert Cuce & Saffa Riffat, 2023. "Detection, location, and diagnosis of different faults in large solar PV system—a review," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 18, pages 659-674.
    4. Sairam, Seshapalli & Seshadhri, Subathra & Marafioti, Giancarlo & Srinivasan, Seshadhri & Mathisen, Geir & Bekiroglu, Korkut, 2022. "Edge-based Explainable Fault Detection Systems for photovoltaic panels on edge nodes," Renewable Energy, Elsevier, vol. 185(C), pages 1425-1440.
    5. Meng Xiao & Bo Yang & Shilong Wang & Yongsheng Chang & Song Li & Gang Yi, 2023. "Research on recognition methods of spot-welding surface appearances based on transfer learning and a lightweight high-precision convolutional neural network," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2153-2170, June.
    6. Tang, Wuqin & Yang, Qiang & Dai, Zhou & Yan, Wenjun, 2024. "Module defect detection and diagnosis for intelligent maintenance of solar photovoltaic plants: Techniques, systems and perspectives," Energy, Elsevier, vol. 297(C).
    7. Zixia Yuan & Guojiang Xiong & Xiaofan Fu, 2022. "Artificial Neural Network for Fault Diagnosis of Solar Photovoltaic Systems: A Survey," Energies, MDPI, vol. 15(22), pages 1-18, November.
    8. Cruz-Rojas, Tonatiuh & Franco, Jesus Alejandro & Hernandez-Escobedo, Quetzalcoatl & Ruiz-Robles, Dante & Juarez-Lopez, Jose Manuel, 2023. "A novel comparison of image semantic segmentation techniques for detecting dust in photovoltaic panels using machine learning and deep learning," Renewable Energy, Elsevier, vol. 217(C).
    9. Cheng Yang & Fuhao Sun & Yujie Zou & Zhipeng Lv & Liang Xue & Chao Jiang & Shuangyu Liu & Bochao Zhao & Haoyang Cui, 2024. "A Survey of Photovoltaic Panel Overlay and Fault Detection Methods," Energies, MDPI, vol. 17(4), pages 1-37, February.
    10. Narvaez, Gabriel & Giraldo, Luis Felipe & Bressan, Michael & Pantoja, Andres, 2021. "Machine learning for site-adaptation and solar radiation forecasting," Renewable Energy, Elsevier, vol. 167(C), pages 333-342.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Livera, Andreas & Theristis, Marios & Makrides, George & Georghiou, George E., 2019. "Recent advances in failure diagnosis techniques based on performance data analysis for grid-connected photovoltaic systems," Renewable Energy, Elsevier, vol. 133(C), pages 126-143.
    2. Joshuva Arockia Dhanraj & Ali Mostafaeipour & Karthikeyan Velmurugan & Kuaanan Techato & Prem Kumar Chaurasiya & Jenoris Muthiya Solomon & Anitha Gopalan & Khamphe Phoungthong, 2021. "An Effective Evaluation on Fault Detection in Solar Panels," Energies, MDPI, vol. 14(22), pages 1-14, November.
    3. Lin, Wenye & Ma, Zhenjun & Li, Kehua & Tyagi, V.V. & Pandey, A.K., 2021. "A dynamic simulation platform for fault modelling and characterisation of building integrated photovoltaics," Renewable Energy, Elsevier, vol. 179(C), pages 963-981.
    4. Alonso Gutiérrez Galeano & Michael Bressan & Fernando Jiménez Vargas & Corinne Alonso, 2018. "Shading Ratio Impact on Photovoltaic Modules and Correlation with Shading Patterns," Energies, MDPI, vol. 11(4), pages 1-26, April.
    5. Bressan, M. & Gutierrez, A. & Garcia Gutierrez, L. & Alonso, C., 2018. "Development of a real-time hot-spot prevention using an emulator of partially shaded PV systems," Renewable Energy, Elsevier, vol. 127(C), pages 334-343.
    6. Qu, Jiaqi & Sun, Qiang & Qian, Zheng & Wei, Lu & Zareipour, Hamidreza, 2024. "Fault diagnosis for PV arrays considering dust impact based on transformed graphical features of characteristic curves and convolutional neural network with CBAM modules," Applied Energy, Elsevier, vol. 355(C).
    7. Rouani, Lahcene & Harkat, Mohamed Faouzi & Kouadri, Abdelmalek & Mekhilef, Saad, 2021. "Shading fault detection in a grid-connected PV system using vertices principal component analysis," Renewable Energy, Elsevier, vol. 164(C), pages 1527-1539.
    8. Hanifi, Hamed & Pander, Matthias & Zeller, Ulli & Ilse, Klemens & Dassler, David & Mirza, Mark & Bahattab, Mohammed A. & Jaeckel, Bengt & Hagendorf, Christian & Ebert, Matthias & Gottschalg, Ralph & S, 2020. "Loss analysis and optimization of PV module components and design to achieve higher energy yield and longer service life in desert regions," Applied Energy, Elsevier, vol. 280(C).
    9. Alkharusi, Tarik & Huang, Gan & Markides, Christos N., 2024. "Characterisation of soiling on glass surfaces and their impact on optical and solar photovoltaic performance," Renewable Energy, Elsevier, vol. 220(C).
    10. Fabiana Lisco & Farwah Bukhari & Soňa Uličná & Kenan Isbilir & Kurt L. Barth & Alan Taylor & John M. Walls, 2020. "Degradation of Hydrophobic, Anti-Soiling Coatings for Solar Module Cover Glass," Energies, MDPI, vol. 13(15), pages 1-15, July.
    11. Mostafa. F. Shaaban & Amal Alarif & Mohamed Mokhtar & Usman Tariq & Ahmed H. Osman & A. R. Al-Ali, 2020. "A New Data-Based Dust Estimation Unit for PV Panels," Energies, MDPI, vol. 13(14), pages 1-17, July.
    12. Lisa B. Bosman & Walter D. Leon-Salas & William Hutzel & Esteban A. Soto, 2020. "PV System Predictive Maintenance: Challenges, Current Approaches, and Opportunities," Energies, MDPI, vol. 13(6), pages 1-16, March.
    13. Onwuemezie, Linus & Gohari Darabkhani, Hamidreza, 2024. "Oxy-hydrogen, solar and wind assisted hydrogen (H2) recovery from municipal plastic waste (MPW) and saltwater electrolysis for better environmental systems and ocean cleanup," Energy, Elsevier, vol. 301(C).
    14. Ghaith, Ahmad F. & Epplin, Francis M. & Frazier, R. Scott, 2017. "Economics of grid-tied household solar panel systems versus grid-only electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 407-424.
    15. Krzysztof Barbusiński & Paweł Kwaśnicki & Anna Gronba-Chyła & Agnieszka Generowicz & Józef Ciuła & Bartosz Szeląg & Francesco Fatone & Agnieszka Makara & Zygmunt Kowalski, 2024. "Influence of Environmental Conditions on the Electrical Parameters of Side Connectors in Glass–Glass Photovoltaic Modules," Energies, MDPI, vol. 17(3), pages 1-13, January.
    16. Wassim Salameh & Jalal Faraj & Elias Harika & Rabih Murr & Mahmoud Khaled, 2021. "On the Optimization of Electrical Water Heaters: Modelling Simulations and Experimentation," Energies, MDPI, vol. 14(13), pages 1-12, June.
    17. Del Pero, Claudio & Aste, Niccolò & Leonforte, Fabrizio, 2021. "The effect of rain on photovoltaic systems," Renewable Energy, Elsevier, vol. 179(C), pages 1803-1814.
    18. Mariz B. Arias & Sungwoo Bae, 2021. "Solar Photovoltaic Power Prediction Using Big Data Tools," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    19. Pawluk, Robert E. & Chen, Yuxiang & She, Yuntong, 2019. "Photovoltaic electricity generation loss due to snow – A literature review on influence factors, estimation, and mitigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 171-182.
    20. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:162:y:2020:i:c:p:249-256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.