IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i2p285-d726926.html
   My bibliography  Save this article

Voting-Based Ensemble Learning Algorithm for Fault Detection in Photovoltaic Systems under Different Weather Conditions

Author

Listed:
  • Nien-Che Yang

    (Department of Electrical Engineering, National Taiwan University of Science and Technology, No. 43, Keelung Road, Section 4, Taipei 10607, Taiwan)

  • Harun Ismail

    (Department of Electrical Engineering, National Taiwan University of Science and Technology, No. 43, Keelung Road, Section 4, Taipei 10607, Taiwan)

Abstract

A photovoltaic (PV) system is one of the renewable energy resources that can help in meeting the ever-increasing energy demand. However, installation of PV systems is prone to faults that can occur unpredictably and remain challenging to detect. Major PV faults that can occur are line-line and open circuits faults, and if they are not addressed appropriately and timely, they may lead to serious problems in the PV system. To solve this problem, this study proposes a voting-based ensemble learning algorithm with linear regression, decision tree, and support vector machine (EL-V LR-DT-SVM ) for PV fault detection and diagnosis. The data acquisition is performed for different weather conditions to trigger the nonlinear nature of the PV system characteristics. The voltage-current characteristics are used as input data. The dataset is studied for a deeper understanding, and pre-processing before feeding it to the EL-V LR-DT-SVM . In the pre-processing step, data are normalized to obtain more feature space, making it easy for the proposed algorithm to discriminate between healthy and faulty conditions. To verify the proposed method, it is compared with other algorithms in terms of accuracy, precision, recall, and F-1 score. The results show that the proposed EL-V LR-DT-SVM algorithm outperforms the other algorithms.

Suggested Citation

  • Nien-Che Yang & Harun Ismail, 2022. "Voting-Based Ensemble Learning Algorithm for Fault Detection in Photovoltaic Systems under Different Weather Conditions," Mathematics, MDPI, vol. 10(2), pages 1-18, January.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:2:p:285-:d:726926
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/2/285/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/2/285/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mellit, A. & Tina, G.M. & Kalogirou, S.A., 2018. "Fault detection and diagnosis methods for photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1-17.
    2. Li, B. & Delpha, C. & Diallo, D. & Migan-Dubois, A., 2021. "Application of Artificial Neural Networks to photovoltaic fault detection and diagnosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. Triki-Lahiani, Asma & Bennani-Ben Abdelghani, Afef & Slama-Belkhodja, Ilhem, 2018. "Fault detection and monitoring systems for photovoltaic installations: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2680-2692.
    4. Pillai, Dhanup S. & Rajasekar, N., 2018. "A comprehensive review on protection challenges and fault diagnosis in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 18-40.
    5. Chine, W. & Mellit, A. & Lughi, V. & Malek, A. & Sulligoi, G. & Massi Pavan, A., 2016. "A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks," Renewable Energy, Elsevier, vol. 90(C), pages 501-512.
    6. Livera, Andreas & Theristis, Marios & Makrides, George & Georghiou, George E., 2019. "Recent advances in failure diagnosis techniques based on performance data analysis for grid-connected photovoltaic systems," Renewable Energy, Elsevier, vol. 133(C), pages 126-143.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adel Mellit & Chadia Zayane & Sahbi Boubaker & Souad Kamel, 2023. "A Sustainable Fault Diagnosis Approach for Photovoltaic Systems Based on Stacking-Based Ensemble Learning Methods," Mathematics, MDPI, vol. 11(4), pages 1-15, February.
    2. César Ricardo Soto-Ocampo & Joaquín Maroto & Juan David Cano-Moreno & José Manuel Mera, 2023. "Optimization of Low-Cost Data Acquisition Equipment Applied to Bearing Condition Monitoring," Mathematics, MDPI, vol. 11(16), pages 1-21, August.
    3. Babek Erdebilli & Burcu Devrim-İçtenbaş, 2022. "Ensemble Voting Regression Based on Machine Learning for Predicting Medical Waste: A Case from Turkey," Mathematics, MDPI, vol. 10(14), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, B. & Delpha, C. & Diallo, D. & Migan-Dubois, A., 2021. "Application of Artificial Neural Networks to photovoltaic fault detection and diagnosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Van Gompel, Jonas & Spina, Domenico & Develder, Chris, 2023. "Cost-effective fault diagnosis of nearby photovoltaic systems using graph neural networks," Energy, Elsevier, vol. 266(C).
    3. Chen, Qi & Li, Xinyuan & Zhang, Zhengjia & Zhou, Chao & Guo, Zhiling & Liu, Zhengguang & Zhang, Haoran, 2023. "Remote sensing of photovoltaic scenarios: Techniques, applications and future directions," Applied Energy, Elsevier, vol. 333(C).
    4. Qu, Jiaqi & Sun, Qiang & Qian, Zheng & Wei, Lu & Zareipour, Hamidreza, 2024. "Fault diagnosis for PV arrays considering dust impact based on transformed graphical features of characteristic curves and convolutional neural network with CBAM modules," Applied Energy, Elsevier, vol. 355(C).
    5. Rouani, Lahcene & Harkat, Mohamed Faouzi & Kouadri, Abdelmalek & Mekhilef, Saad, 2021. "Shading fault detection in a grid-connected PV system using vertices principal component analysis," Renewable Energy, Elsevier, vol. 164(C), pages 1527-1539.
    6. Van Gompel, Jonas & Spina, Domenico & Develder, Chris, 2022. "Satellite based fault diagnosis of photovoltaic systems using recurrent neural networks," Applied Energy, Elsevier, vol. 305(C).
    7. Li, Yuanliang & Ding, Kun & Zhang, Jingwei & Chen, Fudong & Chen, Xiang & Wu, Jiabing, 2019. "A fault diagnosis method for photovoltaic arrays based on fault parameters identification," Renewable Energy, Elsevier, vol. 143(C), pages 52-63.
    8. Bakdi, Azzeddine & Bounoua, Wahiba & Mekhilef, Saad & Halabi, Laith M., 2019. "Nonparametric Kullback-divergence-PCA for intelligent mismatch detection and power quality monitoring in grid-connected rooftop PV," Energy, Elsevier, vol. 189(C).
    9. Zeb, Kamran & Islam, Saif Ul & Khan, Imran & Uddin, Waqar & Ishfaq, M. & Curi Busarello, Tiago Davi & Muyeen, S.M. & Ahmad, Iftikhar & Kim, H.J., 2022. "Faults and Fault Ride Through strategies for grid-connected photovoltaic system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    10. Livera, Andreas & Theristis, Marios & Makrides, George & Georghiou, George E., 2019. "Recent advances in failure diagnosis techniques based on performance data analysis for grid-connected photovoltaic systems," Renewable Energy, Elsevier, vol. 133(C), pages 126-143.
    11. Mellit, Adel & Kalogirou, Soteris, 2021. "Artificial intelligence and internet of things to improve efficacy of diagnosis and remote sensing of solar photovoltaic systems: Challenges, recommendations and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    12. Selma Tchoketch Kebir & Nawal Cheggaga & Adrian Ilinca & Sabri Boulouma, 2021. "An Efficient Neural Network-Based Method for Diagnosing Faults of PV Array," Sustainability, MDPI, vol. 13(11), pages 1-27, May.
    13. Wang, Haizheng & Zhao, Jian & Sun, Qian & Zhu, Honglu, 2019. "Probability modeling for PV array output interval and its application in fault diagnosis," Energy, Elsevier, vol. 189(C).
    14. Michael W. Hopwood & Joshua S. Stein & Jennifer L. Braid & Hubert P. Seigneur, 2022. "Physics-Based Method for Generating Fully Synthetic IV Curve Training Datasets for Machine Learning Classification of PV Failures," Energies, MDPI, vol. 15(14), pages 1-16, July.
    15. Belqasem Aljafari & Siva Rama Krishna Madeti & Priya Ranjan Satpathy & Sudhakar Babu Thanikanti & Bamidele Victor Ayodele, 2022. "Automatic Monitoring System for Online Module-Level Fault Detection in Grid-Tied Photovoltaic Plants," Energies, MDPI, vol. 15(20), pages 1-28, October.
    16. Sairam, Seshapalli & Seshadhri, Subathra & Marafioti, Giancarlo & Srinivasan, Seshadhri & Mathisen, Geir & Bekiroglu, Korkut, 2022. "Edge-based Explainable Fault Detection Systems for photovoltaic panels on edge nodes," Renewable Energy, Elsevier, vol. 185(C), pages 1425-1440.
    17. Weiguo He & Deyang Yin & Kaifeng Zhang & Xiangwen Zhang & Jianyong Zheng, 2021. "Fault Detection and Diagnosis Method of Distributed Photovoltaic Array Based on Fine-Tuning Naive Bayesian Model," Energies, MDPI, vol. 14(14), pages 1-17, July.
    18. Luis D. Murillo-Soto & Carlos Meza, 2021. "Automated Fault Management System in a Photovoltaic Array: A Reconfiguration-Based Approach," Energies, MDPI, vol. 14(9), pages 1-19, April.
    19. Li, Chenxi & Yang, Yongheng & Spataru, Sergiu & Zhang, Kanjian & Wei, Haikun, 2021. "A robust parametrization method of photovoltaic modules for enhancing one-diode model accuracy under varying operating conditions," Renewable Energy, Elsevier, vol. 168(C), pages 764-778.
    20. Sunme Park & Soyeong Park & Myungsun Kim & Euiseok Hwang, 2020. "Clustering-Based Self-Imputation of Unlabeled Fault Data in a Fleet of Photovoltaic Generation Systems," Energies, MDPI, vol. 13(3), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:2:p:285-:d:726926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.