IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i7p1080-d781078.html
   My bibliography  Save this article

Comparative Assessment between Five Control Techniques to Optimize the Maximum Power Point Tracking Procedure for PV Systems

Author

Listed:
  • Fathi Troudi

    (Laboratory LAPER, University Tunis El Manar, Tunis 2092, Tunisia)

  • Houda Jouini

    (Laboratory LAPER, University Tunis El Manar, Tunis 2092, Tunisia)

  • Abdelkader Mami

    (Laboratory LAPER, University Tunis El Manar, Tunis 2092, Tunisia)

  • Nidhal Ben Khedher

    (Department of Mechanical Engineering, College of Engineering, Hail University, Hail 55476, Saudi Arabia
    Laboratory of Thermal and Energetic Systems Studies, National School of Engineering of Monastir, University of Monastir, Monastir 5000, Tunisia)

  • Walid Aich

    (Department of Mechanical Engineering, College of Engineering, Hail University, Hail 55476, Saudi Arabia)

  • Attia Boudjemline

    (Department of Industrial Engineering, College of Engineering, Hail University, Hail 55476, Saudi Arabia)

  • Mohamed Boujelbene

    (Department of Industrial Engineering, College of Engineering, Hail University, Hail 55476, Saudi Arabia)

Abstract

Solar photovoltaic (PV) energy production is important in reducing global energy crises since it is transportable, scalable, and highly customizable dependent on the needs of the industry or end-user. In addition, compared to other renewable resources, photovoltaic systems can produce electricity without moving parts and have a long lifespan. Nevertheless, solar photovoltaic (PV) systems provide intermittent output electricity with a nonlinear output voltage. Due to this intermittent availability, PV installations are facing significant challenges. As a result, in PV power systems, a Maximum Power Point Tracker (MPPT), a power extraction mechanism, is required to assure maximum power delivery at any given moment. The main objective of this work is to study the MPPT method of extracting the maximum power from photovoltaic modules under different solar irradiation and temperatures. Several MPPT methods have been developed for photovoltaic systems to achieve MPP, depending on weather conditions and applications, ranging from simple to more complex methods. Among these methods, five techniques have been presented and compared that are P&O perturbation and observation method, INC incremental conductance method, the ANN neural network method, the open circuit voltage based neural network method FVCO, and the neural network method at the base of FCC (short circuit current).

Suggested Citation

  • Fathi Troudi & Houda Jouini & Abdelkader Mami & Nidhal Ben Khedher & Walid Aich & Attia Boudjemline & Mohamed Boujelbene, 2022. "Comparative Assessment between Five Control Techniques to Optimize the Maximum Power Point Tracking Procedure for PV Systems," Mathematics, MDPI, vol. 10(7), pages 1-15, March.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:7:p:1080-:d:781078
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/7/1080/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/7/1080/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muqaddas Elahi & Hafiz Muhammad Ashraf & Chul-Hwan Kim, 2022. "An Improved Partial Shading Detection Strategy Based on Chimp Optimization Algorithm to Find Global Maximum Power Point of Solar Array System," Energies, MDPI, vol. 15(4), pages 1-26, February.
    2. Waithiru Charles Lawrence Kamuyu & Jong Rok Lim & Chang Sub Won & Hyung Keun Ahn, 2018. "Prediction Model of Photovoltaic Module Temperature for Power Performance of Floating PVs," Energies, MDPI, vol. 11(2), pages 1-13, February.
    3. Rizzo, Santi Agatino & Scelba, Giacomo, 2015. "ANN based MPPT method for rapidly variable shading conditions," Applied Energy, Elsevier, vol. 145(C), pages 124-132.
    4. Srinivasan Vadivel & Boopathi C. Sengodan & Sridhar Ramasamy & Mominul Ahsan & Julfikar Haider & Eduardo M. G. Rodrigues, 2022. "Social Grouping Algorithm Aided Maximum Power Point Tracking Scheme for Partial Shaded Photovoltaic Array," Energies, MDPI, vol. 15(6), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eneko Artetxe & Jokin Uralde & Oscar Barambones & Isidro Calvo & Imanol Martin, 2023. "Maximum Power Point Tracker Controller for Solar Photovoltaic Based on Reinforcement Learning Agent with a Digital Twin," Mathematics, MDPI, vol. 11(9), pages 1-21, May.
    2. Prasannaa Poongavanam & Aneesh A. Chand & Van Ba Tai & Yash Munnalal Gupta & Madhan Kuppusamy & Joshuva Arockia Dhanraj & Karthikeyan Velmurugan & Rajasekar Rajagopal & Tholkappiyan Ramachandran & Kus, 2023. "Annual Thermal Management of the Photovoltaic Module to Enhance Electrical Power and Efficiency Using Heat Batteries," Energies, MDPI, vol. 16(10), pages 1-18, May.
    3. Yang Meng & Zunliang Chen & Hui Cheng & Enpu Wang & Baohua Tan, 2023. "An Efficient Variable Step Solar Maximum Power Point Tracking Algorithm," Energies, MDPI, vol. 16(3), pages 1-20, January.
    4. Zixia Yuan & Guojiang Xiong & Xiaofan Fu, 2022. "Artificial Neural Network for Fault Diagnosis of Solar Photovoltaic Systems: A Survey," Energies, MDPI, vol. 15(22), pages 1-18, November.
    5. Ernesto Bárcenas-Bárcenas & Diego R. Espinoza-Trejo & José A. Pecina-Sánchez & Héctor A. Álvarez-Macías & Isaac Compeán-Martínez & Ángel A. Vértiz-Hernández, 2023. "An improved Fractional MPPT Method by Using a Small Circle Approximation of the P–V Characteristic Curve," Mathematics, MDPI, vol. 11(3), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Obeidi, Nabil & Kermadi, Mostefa & Belmadani, Bachir & Allag, Abdelkrim & Achour, Lazhar & Mesbahi, Nadhir & Mekhilef, Saad, 2023. "A modified current sensorless approach for maximum power point tracking of partially shaded photovoltaic systems," Energy, Elsevier, vol. 263(PA).
    2. Ma, Jun & Cheng, Jack C.P., 2016. "Identifying the influential features on the regional energy use intensity of residential buildings based on Random Forests," Applied Energy, Elsevier, vol. 183(C), pages 193-201.
    3. Waleed Al Abri & Rashid Al Abri & Hassan Yousef & Amer Al-Hinai, 2021. "A Simple Method for Detecting Partial Shading in PV Systems," Energies, MDPI, vol. 14(16), pages 1-12, August.
    4. Abderrazek Saoudi & Saber Krim & Mohamed Faouzi Mimouni, 2021. "Enhanced Intelligent Closed Loop Direct Torque and Flux Control of Induction Motor for Standalone Photovoltaic Water Pumping System," Energies, MDPI, vol. 14(24), pages 1-21, December.
    5. Celikel, Resat & Yilmaz, Musa & Gundogdu, Ahmet, 2022. "A voltage scanning-based MPPT method for PV power systems under complex partial shading conditions," Renewable Energy, Elsevier, vol. 184(C), pages 361-373.
    6. Daniel Matulić & Željko Andabaka & Sanja Radman & Goran Fruk & Josip Leto & Jakša Rošin & Mirta Rastija & Ivana Varga & Tea Tomljanović & Hrvoje Čeprnja & Marko Karoglan, 2023. "Agrivoltaics and Aquavoltaics: Potential of Solar Energy Use in Agriculture and Freshwater Aquaculture in Croatia," Agriculture, MDPI, vol. 13(7), pages 1-26, July.
    7. Guo, Lei & Meng, Zhuo & Sun, Yize & Wang, Libiao, 2018. "A modified cat swarm optimization based maximum power point tracking method for photovoltaic system under partially shaded condition," Energy, Elsevier, vol. 144(C), pages 501-514.
    8. Thopil, George Alex & Sachse, Christiaan Eddie & Lalk, Jörg & Thopil, Miriam Sara, 2020. "Techno-economic performance comparison of crystalline and thin film PV panels under varying meteorological conditions: A high solar resource southern hemisphere case," Applied Energy, Elsevier, vol. 275(C).
    9. Rahaman, Md Atiqur & Chambers, Terrence L. & Fekih, Afef & Wiecheteck, Giovana & Carranza, Gabriel & Possetti, Gustavo Rafael Collere, 2023. "Floating photovoltaic module temperature estimation: Modeling and comparison," Renewable Energy, Elsevier, vol. 208(C), pages 162-180.
    10. Başoğlu, Mustafa Engin & Çakır, Bekir, 2016. "Comparisons of MPPT performances of isolated and non-isolated DC–DC converters by using a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1100-1113.
    11. Deveci, Muhammet & Pamucar, Dragan & Oguz, Elif, 2022. "Floating photovoltaic site selection using fuzzy rough numbers based LAAW and RAFSI model," Applied Energy, Elsevier, vol. 324(C).
    12. Anjan Debnath & Temitayo O. Olowu & Imtiaz Parvez & Md Golam Dastgir & Arif Sarwat, 2020. "A Novel Module Independent Straight Line-Based Fast Maximum Power Point Tracking Algorithm for Photovoltaic Systems," Energies, MDPI, vol. 13(12), pages 1-15, June.
    13. Suzana Domjan & Lenart Petek & Ciril Arkar & Sašo Medved, 2020. "Experimental Study on Energy Efficiency of Multi-Functional BIPV Glazed Façade Structure during Heating Season," Energies, MDPI, vol. 13(11), pages 1-19, June.
    14. Wang, Qin & Yao, Wei & Fang, Jiakun & Ai, Xiaomeng & Wen, Jinyu & Yang, Xiaobo & Xie, Hailian & Huang, Xing, 2020. "Dynamic modeling and small signal stability analysis of distributed photovoltaic grid-connected system with large scale of panel level DC optimizers," Applied Energy, Elsevier, vol. 259(C).
    15. Ranjbaran, Parisa & Yousefi, Hossein & Gharehpetian, G.B. & Astaraei, Fatemeh Razi, 2019. "A review on floating photovoltaic (FPV) power generation units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 332-347.
    16. Ji, Qianfeng & Li, Kefeng & Wang, Yuanming & Feng, Jingjie & Li, Ran & Liang, Ruifeng, 2022. "Effect of floating photovoltaic system on water temperature of deep reservoir and assessment of its potential benefits, a case on Xiangjiaba Reservoir with hydropower station," Renewable Energy, Elsevier, vol. 195(C), pages 946-956.
    17. Dong Eun Jung & Chanuk Lee & Kee Han Kim & Sung Lok Do, 2020. "Development of a Predictive Model for a Photovoltaic Module’s Surface Temperature," Energies, MDPI, vol. 13(15), pages 1-18, August.
    18. Fathabadi, Hassan, 2016. "Novel fast dynamic MPPT (maximum power point tracking) technique with the capability of very high accurate power tracking," Energy, Elsevier, vol. 94(C), pages 466-475.
    19. Kofinas, P. & Doltsinis, S. & Dounis, A.I. & Vouros, G.A., 2017. "A reinforcement learning approach for MPPT control method of photovoltaic sources," Renewable Energy, Elsevier, vol. 108(C), pages 461-473.
    20. Fathabadi, Hassan, 2016. "Novel highly accurate universal maximum power point tracker for maximum power extraction from hybrid fuel cell/photovoltaic/wind power generation systems," Energy, Elsevier, vol. 116(P1), pages 402-416.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:7:p:1080-:d:781078. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.