IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7299-d933378.html
   My bibliography  Save this article

Pyrolysis and Gasification of Biomass and Waste

Author

Listed:
  • Grzegorz Czerski

    (Faculty of Energy and Fuels, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland)

Abstract

The use of renewable solid fuels, including biomass, is of great importance in today’s society [...]

Suggested Citation

  • Grzegorz Czerski, 2022. "Pyrolysis and Gasification of Biomass and Waste," Energies, MDPI, vol. 15(19), pages 1-5, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7299-:d:933378
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7299/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7299/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shiqiao Yang & Ming Lei & Min Li & Chao Liu & Beichen Xue & Rui Xiao, 2022. "Comprehensive Estimation of Combustion Behavior and Thermochemical Structure Evolution of Four Typical Industrial Polymeric Wastes," Energies, MDPI, vol. 15(7), pages 1-22, March.
    2. Katarzyna Śpiewak & Grzegorz Czerski & Karol Bijak, 2021. "The Effect of Temperature-Pressure Conditions on the RDF Gasification in the Atmosphere of Steam and Carbon Dioxide," Energies, MDPI, vol. 14(22), pages 1-15, November.
    3. Ewa M. Iwanek (nee Wilczkowska) & Donald W. Kirk, 2022. "Application of Slow Pyrolysis to Convert Waste Plastics from a Compost-Reject Stream into Py-Char," Energies, MDPI, vol. 15(9), pages 1-15, April.
    4. Elena Butnaru & Mihai Brebu, 2022. "The Thermochemical Conversion of Forestry Residues from Silver Fir ( Abies alba Mill.) by Torrefaction and Pyrolysis," Energies, MDPI, vol. 15(10), pages 1-20, May.
    5. Waheed A. Rasaq & Mateusz Golonka & Miklas Scholz & Andrzej Białowiec, 2021. "Opportunities and Challenges of High-Pressure Fast Pyrolysis of Biomass: A Review," Energies, MDPI, vol. 14(17), pages 1-20, August.
    6. Sahar Safarian & Magnus Rydén & Matty Janssen, 2022. "Development and Comparison of Thermodynamic Equilibrium and Kinetic Approaches for Biomass Pyrolysis Modeling," Energies, MDPI, vol. 15(11), pages 1-18, May.
    7. Arkadiusz Dyjakon & Tomasz Noszczyk & Agata Mostek, 2021. "Mechanical Durability and Grindability of Pellets after Torrefaction Process," Energies, MDPI, vol. 14(20), pages 1-16, October.
    8. Arkadiusz Dyjakon & Łukasz Sobol & Tomasz Noszczyk & Jakub Mitręga, 2022. "The Impact of Torrefaction Temperature on the Physical-Chemical Properties of Residual Exotic Fruit (Avocado, Mango, Lychee) Seeds," Energies, MDPI, vol. 15(2), pages 1-16, January.
    9. Haouari Khadra & Rahmani Kouider & Naas Toufik Tayeb & Awf Al-Kassir & Juan Pablo Carrasco-Amador, 2022. "Numerical Simulation of the Cleaning Performance of a Venturi Scrubber," Energies, MDPI, vol. 15(4), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adeleke, Adekunle A. & Ikubanni, Peter P. & Emmanuel, Stephen S. & Fajobi, Moses O. & Nwachukwu, Praise & Adesibikan, Ademidun A. & Odusote, Jamiu K. & Adeyemi, Emmanuel O. & Abioye, Oluwaseyi M. & Ok, 2024. "A comprehensive review on the similarity and disparity of torrefied biomass and coal properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    2. Ewa M. Iwanek (nee Wilczkowska) & Donald W. Kirk, 2022. "Application of Slow Pyrolysis to Convert Waste Plastics from a Compost-Reject Stream into Py-Char," Energies, MDPI, vol. 15(9), pages 1-15, April.
    3. Elena Butnaru & Mihai Brebu, 2022. "The Thermochemical Conversion of Forestry Residues from Silver Fir ( Abies alba Mill.) by Torrefaction and Pyrolysis," Energies, MDPI, vol. 15(10), pages 1-20, May.
    4. Umut Şen & Bruno Esteves & Helena Pereira, 2023. "Pyrolysis and Extraction of Bark in a Biorefineries Context: A Critical Review," Energies, MDPI, vol. 16(13), pages 1-23, June.
    5. Kalvis Kons & Boško Blagojević & Blas Mola-Yudego & Robert Prinz & Johanna Routa & Biljana Kulisic & Bruno Gagnon & Dan Bergström, 2022. "Industrial End-Users’ Preferred Characteristics for Wood Biomass Feedstocks," Energies, MDPI, vol. 15(10), pages 1-22, May.
    6. Wojtacha-Rychter, Karolina & Howaniec, Natalia & Smoliński, Adam, 2024. "Investigation of co-gasification characteristics of coal with wood biomass and rubber seals in a fixed bed gasifier," Renewable Energy, Elsevier, vol. 220(C).
    7. Augusto Fernando de Freitas Costa & Caio Campos Ferreira & Simone Patrícia Aranha da Paz & Marcelo Costa Santos & Luiz Gabriel Santos Moreira & Neyson Martins Mendonça & Fernanda Paula da Costa Assunç, 2023. "Catalytic Upgrading of Plastic Waste of Electric and Electronic Equipment (WEEE) Pyrolysis Vapors over Si–Al Ash Pellets in a Two-Stage Reactor," Energies, MDPI, vol. 16(1), pages 1-32, January.
    8. Sahar Safarian, 2023. "Climate Impact Comparison of Biomass Combustion and Pyrolysis with Different Applications for Biochar Based on LCA," Energies, MDPI, vol. 16(14), pages 1-11, July.
    9. Gendek, Arkadiusz & Piętka, Jacek & Aniszewska, Monika & Malaťák, Jan & Velebil, Jan & Tamelová, Barbora & Krilek, Jozef & Moskalik, Tadeusz, 2023. "Energy value of silver fir (Abies alba) and Norway spruce (Picea abies) wood depending on the degree of its decomposition by selected fungal species," Renewable Energy, Elsevier, vol. 215(C).
    10. Marcelina Bury & Tadeusz Dziok & Karel Borovec & Piotr Burmistrz, 2023. "Influence of RDF Composition on Mercury Release during Thermal Pretreatment," Energies, MDPI, vol. 16(2), pages 1-13, January.
    11. Savelii Kukharets & Gennadii Golub & Marek Wrobel & Olena Sukmaniuk & Krzysztof Mudryk & Taras Hutsol & Algirdas Jasinskas & Marcin Jewiarz & Jonas Cesna & Iryna Horetska, 2022. "A Theoretical Model of the Gasification Rate of Biomass and Its Experimental Confirmation," Energies, MDPI, vol. 15(20), pages 1-15, October.
    12. Łukasz Sobol & Jacek Łyczko & Arkadiusz Dyjakon & Ryszard Sroczyński, 2023. "Relationship between Odor Adsorption Ability and Physical–Hydraulic Properties of Torrefied Biomass: Initial Study," Energies, MDPI, vol. 16(4), pages 1-18, February.
    13. Janaki Komandur & Abhishek Kumar & Preethi Para & Kaustubha Mohanty, 2022. "Kinetic Parameters Estimation of Thermal and Co-Pyrolysis of Groundnut De-oiled Cake and Polyethylene Terephthalate (PET) Waste," Energies, MDPI, vol. 15(20), pages 1-12, October.

    More about this item

    Keywords

    n/a;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7299-:d:933378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.