IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v215y2023ics0960148123008546.html
   My bibliography  Save this article

Energy value of silver fir (Abies alba) and Norway spruce (Picea abies) wood depending on the degree of its decomposition by selected fungal species

Author

Listed:
  • Gendek, Arkadiusz
  • Piętka, Jacek
  • Aniszewska, Monika
  • Malaťák, Jan
  • Velebil, Jan
  • Tamelová, Barbora
  • Krilek, Jozef
  • Moskalik, Tadeusz

Abstract

Negative environmental impacts related to climate change and social pressure to raise the rotation age of forests contribute to the quality deterioration of harvested wood, including its decomposition by fungi. This paper presents the results of laboratory experiments investigating the decomposition of Norway spruce (Abies alba) and silver fir (Picea abies) wood by selected species of decay fungi: Hericium flagellum and Bondarzewia mesenterica (causing white rot) as well as Rhodofomes roseus (causing brown rot). The decay process affects wood density, elemental composition, net calorific value, as well as the amount and price of the energy contained in the wood. Wood density was measured conventionally using an electronic caliper and laboratory balance. Energy parameters were determined using elemental analyzer and combustion calorimeter. Wood decay was found to adversely affect energy content per unit of wood at a given volume, thus leading to higher prices per unit of energy. Over the 120 days of the experiment, wood parameters were not affected considerably by Hericium flagellum or Bondarzewia mesenterica. Of the three examined fungal species, Rhodofomes roseus caused the highest weight loss of wood and the greatest decrease in its oven-dry density (spruce - a decrease from 409 to 214 kg m−3; fir - a decrease from 420 to 306 kg m−3), unfavorably reducing energy content per 1 m3 of wood (spruce – decrease by 3.8 GJ m−3; fir – decrease by 2.3 GJ m−3) and raising the unit price of energy.

Suggested Citation

  • Gendek, Arkadiusz & Piętka, Jacek & Aniszewska, Monika & Malaťák, Jan & Velebil, Jan & Tamelová, Barbora & Krilek, Jozef & Moskalik, Tadeusz, 2023. "Energy value of silver fir (Abies alba) and Norway spruce (Picea abies) wood depending on the degree of its decomposition by selected fungal species," Renewable Energy, Elsevier, vol. 215(C).
  • Handle: RePEc:eee:renene:v:215:y:2023:i:c:s0960148123008546
    DOI: 10.1016/j.renene.2023.118948
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123008546
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.118948?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haberl, Helmut & Sprinz, Detlef & Bonazountas, Marc & Cocco, Pierluigi & Desaubies, Yves & Henze, Mogens & Hertel, Ole & Johnson, Richard K. & Kastrup, Ulrike & Laconte, Pierre & Lange, Eckart & Novak, 2012. "Correcting a fundamental error in greenhouse gas accounting related to bioenergy," Energy Policy, Elsevier, vol. 45(C), pages 18-23.
    2. Grzegorz Zając & Joanna Szyszlak-Bargłowicz & Wojciech Gołębiowski & Małgorzata Szczepanik, 2018. "Chemical Characteristics of Biomass Ashes," Energies, MDPI, vol. 11(11), pages 1-15, October.
    3. Ahmad, Anis Atikah & Zawawi, Norfadhila Abdullah & Kasim, Farizul Hafiz & Inayat, Abrar & Khasri, Azduwin, 2016. "Assessing the gasification performance of biomass: A review on biomass gasification process conditions, optimization and economic evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1333-1347.
    4. Vasiliki KAMPERIDOU & Charalampos LYKIDIS & Panagiotis BARMPOUTIS, 2018. "Utilization of wood and bark of fast-growing hardwood species in energy production," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 64(4), pages 164-170.
    5. Elena Butnaru & Mihai Brebu, 2022. "The Thermochemical Conversion of Forestry Residues from Silver Fir ( Abies alba Mill.) by Torrefaction and Pyrolysis," Energies, MDPI, vol. 15(10), pages 1-20, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Božidar Matin & Ivan Brandić & Ana Matin & Josip Ištvanić & Alan Antonović, 2024. "Possibilities of Liquefied Spruce ( Picea abies ) and Oak ( Quercus robur ) Biomass as an Environmentally Friendly Additive in Conventional Phenol–Formaldehyde Resin Wood Adhesives," Energies, MDPI, vol. 17(17), pages 1-18, September.
    2. Marek Wieruszewski & Jakub Kawalerczyk & Kinga Stuper-Szablewska & Joanna Walkiewicz & Martin Lieskovský & Maciej Jarzębski & Radosław Mirski, 2024. "Changes in the Characteristics of Pine Logging Residue during Storage in Forest Stands," Energies, MDPI, vol. 17(4), pages 1-13, February.
    3. Zachl, Angelika & Buchmayr, Markus & Gruber, Johann & Anca-Couce, Andrés & Scharler, Robert & Hochenauer, Christoph, 2024. "Experimental-data-based, easy-to-use product gas composition prediction of a commercial open-top gasifier based on commercially used properties of softwood chips," Renewable Energy, Elsevier, vol. 226(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wojciech Rzeźnik & Ilona Rzeźnik & Paulina Mielcarek-Bocheńska & Mateusz Urbański, 2023. "Air Pollutants Emission during Co-Combustion of Animal Manure and Wood Pellets in 15 kW Boiler," Energies, MDPI, vol. 16(18), pages 1-17, September.
    2. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    3. Buentello-Montoya, D.A. & Duarte-Ruiz, C.A. & Maldonado-Escalante, J.F., 2023. "Co-gasification of waste PET, PP and biomass for energy recovery: A thermodynamic model to assess the produced syngas quality," Energy, Elsevier, vol. 266(C).
    4. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    5. Ekholm, Tommi & Karvosenoja, Niko & Tissari, Jarkko & Sokka, Laura & Kupiainen, Kaarle & Sippula, Olli & Savolahti, Mikko & Jokiniemi, Jorma & Savolainen, Ilkka, 2014. "A multi-criteria analysis of climate, health and acidification impacts due to greenhouse gases and air pollution—The case of household-level heating technologies," Energy Policy, Elsevier, vol. 74(C), pages 499-509.
    6. Baudry, Gino & Delrue, Florian & Legrand, Jack & Pruvost, Jérémy & Vallée, Thomas, 2017. "The challenge of measuring biofuel sustainability: A stakeholder-driven approach applied to the French case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 933-947.
    7. Sérgio Ferreira & Eliseu Monteiro & Luís Calado & Valter Silva & Paulo Brito & Cândida Vilarinho, 2019. "Experimental and Modeling Analysis of Brewers´ Spent Grains Gasification in a Downdraft Reactor," Energies, MDPI, vol. 12(23), pages 1-18, November.
    8. Kim, Jun Young & Kim, Dongjae & Li, Zezhong John & Dariva, Claudio & Cao, Yankai & Ellis, Naoko, 2023. "Predicting and optimizing syngas production from fluidized bed biomass gasifiers: A machine learning approach," Energy, Elsevier, vol. 263(PC).
    9. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    10. Elżbieta Rolka & Andrzej Cezary Żołnowski & Mirosław Wyszkowski & Weronika Zych & Anna Skorwider-Namiotko, 2023. "Wood Biomass Ash (WBA) from the Heat Production Process as a Mineral Amendment for Improving Selected Soil Properties," Energies, MDPI, vol. 16(13), pages 1-17, July.
    11. Liu, Li & Jiang, Peng & Qian, Hongliang & Mu, Liwen & Lu, Xiaohua & Zhu, Jiahua, 2022. "CO2-negative biomass conversion: An economic route with co-production of green hydrogen and highly porous carbon," Applied Energy, Elsevier, vol. 311(C).
    12. Ruivo, Luís & Silva, Tiago & Neves, Daniel & Tarelho, Luís & Frade, Jorge, 2023. "Thermodynamic guidelines for improved operation of iron-based catalysts in gasification of biomass," Energy, Elsevier, vol. 268(C).
    13. Benedek, József & Sebestyén, Tihamér-Tibor & Bartók, Blanka, 2018. "Evaluation of renewable energy sources in peripheral areas and renewable energy-based rural development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 516-535.
    14. Małgorzata Sieradzka & Agata Mlonka-Mędrala & Izabela Kalemba-Rec & Markus Reinmöller & Felix Küster & Wojciech Kalawa & Aneta Magdziarz, 2022. "Evaluation of Physical and Chemical Properties of Residue from Gasification of Biomass Wastes," Energies, MDPI, vol. 15(10), pages 1-19, May.
    15. Abdulrahman A. Al-Rabiah & Jiyad N. Al-Dawsari & Abdelhamid M. Ajbar & Rayan K. Al Darwish & Omar Y. Abdelaziz, 2022. "Development of a Biomass Gasification Process for the Coproduction of Methanol and Power from Red Sea Microalgae," Energies, MDPI, vol. 15(21), pages 1-14, October.
    16. Pérez, Nestor Proenza & Pedroso, Daniel Travieso & Machin, Einara Blanco & Antunes, Julio Santana & Tuna, Celso Eduardo & Silveira, José Luz, 2019. "Geometrical characteristics of sugarcane bagasse for being used as fuel in fluidized bed technologies," Renewable Energy, Elsevier, vol. 143(C), pages 1210-1224.
    17. Garcia, Dorival Pinheiro & Caraschi, José Cláudio & Ventorim, Gustavo & Vieira, Fábio Henrique Antunes & de Paula Protásio, Thiago, 2019. "Assessment of plant biomass for pellet production using multivariate statistics (PCA and HCA)," Renewable Energy, Elsevier, vol. 139(C), pages 796-805.
    18. Nadia Cerone & Francesco Zimbardi, 2021. "Effects of Oxygen and Steam Equivalence Ratios on Updraft Gasification of Biomass," Energies, MDPI, vol. 14(9), pages 1-18, May.
    19. Trainer, Ted, 2012. "Can Australia run on renewable energy? The negative case," Energy Policy, Elsevier, vol. 50(C), pages 306-314.
    20. Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:215:y:2023:i:c:s0960148123008546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.