IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5426-d626576.html
   My bibliography  Save this article

Opportunities and Challenges of High-Pressure Fast Pyrolysis of Biomass: A Review

Author

Listed:
  • Waheed A. Rasaq

    (Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wroclaw, Poland)

  • Mateusz Golonka

    (Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wroclaw, Poland)

  • Miklas Scholz

    (Institute of Environmental Engineering, Wroclaw University of Environmental and Life Sciences, ul. Norwida 25, 50-375 Wrocław, Poland
    Division of Water Resources Engineering, Faculty of Engineering, Lund University, P.O. Box 118, 221 00 Lund, Sweden
    Department of Civil Engineering Science, Kingsway Campus, School of Civil Engineering and the Built Environment, University of Johannesburg, P.O. Box 524, Aukland Park 2006, Johannesburg 2092, South Africa
    Department of Town Planning, Engineering Networks and Systems, South Ural State University (National Research University), 76, Lenin Prospekt, 454080 Chelyabinsk, Russia)

  • Andrzej Białowiec

    (Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wroclaw, Poland)

Abstract

Most pyrolysis reactors require small sizes of biomass particles to achieve high-quality products. Moreover, understanding the usefulness of high-pressure systems in pyrolysis is important, given the operational challenges they exhibit specific to various biomass materials. To actualize these aspects, the authors first checked previous reviews involving pyrolysis on different biomass and different conditions/situations with their respective objectives and subsections. From these already existing reviews, the team found that there has not been much emphasis on high-pressure fast pyrolysis and its potential in biomass conversion, showing that it is a novel direction in the pyrolysis technology development. Therefore, this review aims to shed more light on high-pressure fast pyrolysis, drawing from (a) classification of pyrolysis; (b) reactors used in fast pyrolysis; (c) heat transfer in pyrolysis feedstock; (d) fast pyrolysis parameters; (e) properties/yields of fast pyrolysis products; (f) high pressure on pyrolysis process; (g) catalyst types and their application; and (h) problems to overcome in the pyrolysis process. This review increases the understanding regarding high-pressure fast pyrolysis. An attempt has been made to demonstrate how high-pressure fast pyrolysis can bring about high-quality biomass conversion into new products. It has been shown that fluidized bed (bubbling and circulating) reactors are most suitable and profitable in terms of product yield. The high-pressure, especially combined with the fast-heating rate, may be more efficient and beneficial than working under ambient pressure. However, the challenges of pyrolysis on a technical scale appear to be associated with obtaining high product quality and yield. The direction of future work should focus on the design of high-pressure process reactors and material types that might have greater biomass promise, as well understanding the impact of pyrolysis technology on the various output products, especially those with lower energy demands. We propose that the increase of process pressure and biomass particle size decrease should be considered as variables for optimization.

Suggested Citation

  • Waheed A. Rasaq & Mateusz Golonka & Miklas Scholz & Andrzej Białowiec, 2021. "Opportunities and Challenges of High-Pressure Fast Pyrolysis of Biomass: A Review," Energies, MDPI, vol. 14(17), pages 1-20, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5426-:d:626576
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5426/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5426/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gianluca Cavalaglio & Franco Cotana & Andrea Nicolini & Valentina Coccia & Alessandro Petrozzi & Alessandro Formica & Alessandro Bertini, 2020. "Characterization of Various Biomass Feedstock Suitable for Small-Scale Energy Plants as Preliminary Activity of Biocheaper Project," Sustainability, MDPI, vol. 12(16), pages 1-10, August.
    2. Bridgwater, A. V. & Peacocke, G. V. C., 2000. "Fast pyrolysis processes for biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(1), pages 1-73, March.
    3. Campuzano, Felipe & Brown, Robert C. & Martínez, Juan Daniel, 2019. "Auger reactors for pyrolysis of biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 372-409.
    4. Hao, Jingyuan & Qi, Baojin & Li, Dong & Zeng, Feiya, 2021. "Catalytic co-pyrolysis of rice straw and ulva prolifera macroalgae: Effects of process parameter on bio-oil up-gradation," Renewable Energy, Elsevier, vol. 164(C), pages 460-471.
    5. Mohammed J. Kabir & Ashfaque Ahmed Chowdhury & Mohammad G. Rasul, 2015. "Pyrolysis of Municipal Green Waste: A Modelling, Simulation and Experimental Analysis," Energies, MDPI, vol. 8(8), pages 1-20, July.
    6. Isahak, Wan Nor Roslam Wan & Hisham, Mohamed W.M. & Yarmo, Mohd Ambar & Yun Hin, Taufiq-yap, 2012. "A review on bio-oil production from biomass by using pyrolysis method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5910-5923.
    7. Chamseddine Guizani & Mejdi Jeguirim & Sylvie Valin & Lionel Limousy & Sylvain Salvador, 2017. "Biomass Chars: The Effects of Pyrolysis Conditions on Their Morphology, Structure, Chemical Properties and Reactivity," Energies, MDPI, vol. 10(6), pages 1-18, June.
    8. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    9. Chiaramonti, David & Oasmaa, Anja & Solantausta, Yrjö, 2007. "Power generation using fast pyrolysis liquids from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1056-1086, August.
    10. Butler, Eoin & Devlin, Ger & Meier, Dietrich & McDonnell, Kevin, 2011. "A review of recent laboratory research and commercial developments in fast pyrolysis and upgrading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4171-4186.
    11. Chrysoula M. Michailof & Konstantinos G. Kalogiannis & Themistoklis Sfetsas & Despoina T. Patiaka & Angelos A. Lappas, 2016. "Advanced analytical techniques for bio-oil characterization," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(6), pages 614-639, November.
    12. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.
    13. Abbasi, Tasneem & Abbasi, S.A., 2010. "Biomass energy and the environmental impacts associated with its production and utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 919-937, April.
    14. Mao, Chunlan & Feng, Yongzhong & Wang, Xiaojiao & Ren, Guangxin, 2015. "Review on research achievements of biogas from anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 540-555.
    15. Han, Jun & Kim, Heejoon, 2008. "The reduction and control technology of tar during biomass gasification/pyrolysis: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 397-416, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kalvis Kons & Boško Blagojević & Blas Mola-Yudego & Robert Prinz & Johanna Routa & Biljana Kulisic & Bruno Gagnon & Dan Bergström, 2022. "Industrial End-Users’ Preferred Characteristics for Wood Biomass Feedstocks," Energies, MDPI, vol. 15(10), pages 1-22, May.
    2. Grzegorz Czerski, 2022. "Pyrolysis and Gasification of Biomass and Waste," Energies, MDPI, vol. 15(19), pages 1-5, October.
    3. Ewa M. Iwanek (nee Wilczkowska) & Donald W. Kirk, 2022. "Application of Slow Pyrolysis to Convert Waste Plastics from a Compost-Reject Stream into Py-Char," Energies, MDPI, vol. 15(9), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
    2. Feng, Qunjie & Lin, Yunqin, 2017. "Integrated processes of anaerobic digestion and pyrolysis for higher bioenergy recovery from lignocellulosic biomass: A brief review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1272-1287.
    3. Braimakis, Konstantinos & Atsonios, Konstantinos & Panopoulos, Kyriakos D. & Karellas, Sotirios & Kakaras, Emmanuel, 2014. "Economic evaluation of decentralized pyrolysis for the production of bio-oil as an energy carrier for improved logistics towards a large centralized gasification plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 57-72.
    4. Douvartzides, Savvas & Charisiou, Nikolaos D. & Wang, Wen & Papadakis, Vagelis G. & Polychronopoulou, Kyriaki & Goula, Maria A., 2022. "Catalytic fast pyrolysis of agricultural residues and dedicated energy crops for the production of high energy density transportation biofuels. Part I: Chemical pathways and bio-oil upgrading," Renewable Energy, Elsevier, vol. 185(C), pages 483-505.
    5. Mohammad I. Jahirul & Mohammad G. Rasul & Ashfaque Ahmed Chowdhury & Nanjappa Ashwath, 2012. "Biofuels Production through Biomass Pyrolysis —A Technological Review," Energies, MDPI, vol. 5(12), pages 1-50, November.
    6. Akhtar, Javaid & Saidina Amin, NorAishah, 2012. "A review on operating parameters for optimum liquid oil yield in biomass pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5101-5109.
    7. No, Soo-Young, 2014. "Application of bio-oils from lignocellulosic biomass to transportation, heat and power generation—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1108-1125.
    8. Asadieraghi, Masoud & Wan Daud, Wan Mohd Ashri & Abbas, Hazzim F., 2014. "Model compound approach to design process and select catalysts for in-situ bio-oil upgrading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 286-303.
    9. Kan, Tao & Strezov, Vladimir & Evans, Tim J., 2016. "Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1126-1140.
    10. Chen, Dengyu & Zhou, Jianbin & Zhang, Qisheng & Zhu, Xifeng, 2014. "Evaluation methods and research progresses in bio-oil storage stability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 69-79.
    11. Mirkouei, Amin & Haapala, Karl R. & Sessions, John & Murthy, Ganti S., 2017. "A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 15-35.
    12. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    13. Mahlia, T.M.I. & Syazmi, Z.A.H.S. & Mofijur, M. & Abas, A.E. Pg & Bilad, M.R. & Ong, Hwai Chyuan & Silitonga, A.S., 2020. "Patent landscape review on biodiesel production: Technology updates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    14. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    15. Radoslaw Slezak & Hilal Unyay & Szymon Szufa & Stanislaw Ledakowicz, 2023. "An Extensive Review and Comparison of Modern Biomass Reactors Torrefaction vs. Biomass Pyrolizers—Part 2," Energies, MDPI, vol. 16(5), pages 1-25, February.
    16. Theodore Dickerson & Juan Soria, 2013. "Catalytic Fast Pyrolysis: A Review," Energies, MDPI, vol. 6(1), pages 1-25, January.
    17. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    18. Sulaiman, F. & Abdullah, N., 2011. "Optimum conditions for maximising pyrolysis liquids of oil palm empty fruit bunches," Energy, Elsevier, vol. 36(5), pages 2352-2359.
    19. Amutio, M. & Lopez, G. & Artetxe, M. & Elordi, G. & Olazar, M. & Bilbao, J., 2012. "Influence of temperature on biomass pyrolysis in a conical spouted bed reactor," Resources, Conservation & Recycling, Elsevier, vol. 59(C), pages 23-31.
    20. Juan Luis Aguirre & Juan Baena & María Teresa Martín & Leonor Nozal & Sergio González & José Luis Manjón & Manuel Peinado, 2020. "Composition, Ageing and Herbicidal Properties of Wood Vinegar Obtained through Fast Biomass Pyrolysis," Energies, MDPI, vol. 13(10), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5426-:d:626576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.