IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7502-d675900.html
   My bibliography  Save this article

The Effect of Temperature-Pressure Conditions on the RDF Gasification in the Atmosphere of Steam and Carbon Dioxide

Author

Listed:
  • Katarzyna Śpiewak

    (Faculty of Energy and Fuels, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Grzegorz Czerski

    (Faculty of Energy and Fuels, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Karol Bijak

    (Faculty of Energy and Fuels, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland)

Abstract

This research aimed to assess the process conditions, temperature and pressure, on the gasification of alternative refuse-derived fuel (RDF) in the atmosphere of steam and carbon dioxide on a laboratory scale using a fixed bed reactor. For this reason, the selected RDF were analysed, including proximate and ultimate analysis, mercury content and ash composition. After that, isothermal gasification measurements using the thermovolumetric method were performed under various temperatures (700, 750, 800, 900 °C) and pressures (0.5, 1, 1.5 MPa), using steam and carbon dioxide as gasifying agents. The obtained results showed that in the entire analysed range, the increase in temperature positively affect both the steam and CO 2 gasification of RDF. The formation rates of main components (H 2 and/or CO) of the resulting gas, as well as yields of gas components and maximum carbon conversion degrees increase. However, this positive effect was the greater, the lower the process pressure was. In turn, the effect of pressure was more complex. In the case of RDF steam gasification, an increase in pressure had a negative effect on the process, while when using carbon dioxide as a gasifying agent, an improvement of most analysed parameters was observed; however, only at low temperatures, 700–750 °C.

Suggested Citation

  • Katarzyna Śpiewak & Grzegorz Czerski & Karol Bijak, 2021. "The Effect of Temperature-Pressure Conditions on the RDF Gasification in the Atmosphere of Steam and Carbon Dioxide," Energies, MDPI, vol. 14(22), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7502-:d:675900
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7502/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7502/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lam, Su Shiung & Liew, Rock Keey & Jusoh, Ahmad & Chong, Cheng Tung & Ani, Farid Nasir & Chase, Howard A., 2016. "Progress in waste oil to sustainable energy, with emphasis on pyrolysis techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 741-753.
    2. Dupont, Capucine & Jacob, Sylvain & Marrakchy, Khalil Ould & Hognon, Céline & Grateau, Maguelone & Labalette, Françoise & Da Silva Perez, Denilson, 2016. "How inorganic elements of biomass influence char steam gasification kinetics," Energy, Elsevier, vol. 109(C), pages 430-435.
    3. Kapil Dev Sharma & Siddharth Jain, 2020. "Municipal solid waste generation, composition, and management: the global scenario," Social Responsibility Journal, Emerald Group Publishing Limited, vol. 16(6), pages 917-948, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wojtacha-Rychter, Karolina & Howaniec, Natalia & Smoliński, Adam, 2024. "Investigation of co-gasification characteristics of coal with wood biomass and rubber seals in a fixed bed gasifier," Renewable Energy, Elsevier, vol. 220(C).
    2. Marcelina Bury & Tadeusz Dziok & Karel Borovec & Piotr Burmistrz, 2023. "Influence of RDF Composition on Mercury Release during Thermal Pretreatment," Energies, MDPI, vol. 16(2), pages 1-13, January.
    3. Grzegorz Czerski, 2022. "Pyrolysis and Gasification of Biomass and Waste," Energies, MDPI, vol. 15(19), pages 1-5, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qianshi, Song & Wei, Zhang & Xiaowei, Wang & Xiaohan, Wang & Haowen, Li & Zixin, Yang & Yue, Ye & Guangqian, Luo, 2023. "Comprehensive effects of different inorganic elements on initial biomass char-CO2 gasification reactivity in micro fluidised bed reactor: Theoretical modeling and experiment analysis," Energy, Elsevier, vol. 262(PA).
    2. Anufriev, I.S. & Kopyev, E.P. & Alekseenko, S.V. & Sharypov, O.V. & Vigriyanov, M.S., 2022. "New ecology safe waste-to-energy technology of liquid fuel combustion with superheated steam," Energy, Elsevier, vol. 250(C).
    3. Wang, Jia & Jiang, Jianchun & Li, Dongxian & Meng, Xianzhi & Zhan, Guowu & Wang, Yunpu & Zhang, Aihua & Sun, Yunjuan & Ruan, Roger & Ragauskas, Arthur J., 2022. "Creating values from wastes: Producing biofuels from waste cooking oil via a tandem vapor-phase hydrotreating process," Applied Energy, Elsevier, vol. 323(C).
    4. Abdul-Wahab Tahiru & Samuel Jerry Cobbina & Wilhemina Asare, 2024. "A Circular Economy Approach to Addressing Waste Management Challenges in Tamale’s Waste Management System," World, MDPI, vol. 5(3), pages 1-24, August.
    5. Chen, Yuan & Lin, Weigang & Wu, Hao & Jensen, Peter Arendt & Song, Wenli & Du, Lin & Li, Songgeng, 2021. "Steam gasification of char derived from penicillin mycelial dreg and lignocellulosic biomass: Influence of P, K and Ca on char reactivity," Energy, Elsevier, vol. 228(C).
    6. Xu, Lujiang & Chen, Shijia & Song, He & Liu, Yang & Shi, Chenchen & Lu, Qiang, 2020. "Comprehensively utilization of spent bleaching clay for producing high quality bio-fuel via fast pyrolysis process," Energy, Elsevier, vol. 190(C).
    7. Dahou, T. & Defoort, F. & Khiari, B. & Labaki, M. & Dupont, C. & Jeguirim, M., 2021. "Role of inorganics on the biomass char gasification reactivity: A review involving reaction mechanisms and kinetics models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Hervy, Maxime & Weiss-Hortala, Elsa & Pham Minh, Doan & Dib, Hadi & Villot, Audrey & Gérente, Claire & Berhanu, Sarah & Chesnaud, Anthony & Thorel, Alain & Le Coq, Laurence & Nzihou, Ange, 2019. "Reactivity and deactivation mechanisms of pyrolysis chars from bio-waste during catalytic cracking of tar," Applied Energy, Elsevier, vol. 237(C), pages 487-499.
    9. Ferdoush, Md. Ruhul & Aziz, Ridwan Al & Karmaker, Chitra Lekha & Debnath, Binoy & Limon, Mohammad Hossain & Bari, A.B.M. Mainul, 2024. "Unraveling the challenges of waste-to-energy transition in emerging economies: Implications for sustainability," Innovation and Green Development, Elsevier, vol. 3(2).
    10. Luo, Juan & Ma, Rui & Lin, Junhao & Sun, Shichang & Gong, Guojin & Sun, Jiaman & Chen, Yi & Ma, Ning, 2023. "Review of microwave pyrolysis of sludge to produce high quality biogas: Multi-perspectives process optimization and critical issues proposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    11. Luz, Fábio Codignole & Cordiner, Stefano & Manni, Alessandro & Mulone, Vincenzo & Rocco, Vittorio & Braglia, Roberto & Canini, Antonella, 2018. "Ampelodesmos mauritanicus pyrolysis biochar in anaerobic digestion process: Evaluation of the biogas yield," Energy, Elsevier, vol. 161(C), pages 663-669.
    12. Elsaddik, Majd & Nzihou, Ange & Delmas, Michel & Delmas, Guo-Hua, 2023. "Steam gasification of cellulose pulp char: Insights on experimental and kinetic study with a focus on the role of Silicon," Energy, Elsevier, vol. 271(C).
    13. Sławomir Kasiński & Marcin Dębowski, 2024. "Municipal Solid Waste as a Renewable Energy Source: Advances in Thermochemical Conversion Technologies and Environmental Impacts," Energies, MDPI, vol. 17(18), pages 1-33, September.
    14. Ligorio, Lorenzo & Venturelli, Andrea & Caputo, Fabio, 2022. "Tracing the boundaries between sustainable cities and cities for sustainable development. An LDA analysis of management studies," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    15. González Martínez, María & Dupont, Capucine & da Silva Perez, Denilson & Mortha, Gérard & Thiéry, Sébastien & Meyer, Xuân-mi & Gourdon, Christophe, 2020. "Understanding the torrefaction of woody and agricultural biomasses through their extracted macromolecular components. Part 1: Experimental thermogravimetric solid mass loss," Energy, Elsevier, vol. 205(C).
    16. Prestipino, M. & Galvagno, A. & Karlström, O. & Brink, A., 2018. "Energy conversion of agricultural biomass char: Steam gasification kinetics," Energy, Elsevier, vol. 161(C), pages 1055-1063.
    17. Hita, Idoia & Arabiourrutia, Miriam & Olazar, Martin & Bilbao, Javier & Arandes, José María & Castaño, Pedro, 2016. "Opportunities and barriers for producing high quality fuels from the pyrolysis of scrap tires," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 745-759.
    18. Diao, Rui & Li, Shanshan & Deng, Jingjing & Zhu, Xifeng, 2021. "Interaction and kinetic analysis of co-gasification of bituminous coal with walnut shell under CO2 atmosphere: Effect of inorganics and carbon structures," Renewable Energy, Elsevier, vol. 173(C), pages 177-187.
    19. Śpiewak, K. & Czerski, G. & Grzywacz, P. & Makowska, D., 2024. "Assessment of sewage sludge as a component for the tire char co-gasification process," Energy, Elsevier, vol. 308(C).
    20. Felicien Sebahire & Faridullah Faridullah & Muhammad Irshad & Aziz Ur Rahim Bacha & Farhan Hafeez & Jean Nduwamungu, 2024. "Effect of Biochar on Composting of Cow Manure and Kitchen Waste," Land, MDPI, vol. 13(10), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7502-:d:675900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.