IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i1p541-d1023896.html
   My bibliography  Save this article

Catalytic Upgrading of Plastic Waste of Electric and Electronic Equipment (WEEE) Pyrolysis Vapors over Si–Al Ash Pellets in a Two-Stage Reactor

Author

Listed:
  • Augusto Fernando de Freitas Costa

    (Graduate Program of Natural Resources Engineering of Amazon, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil)

  • Caio Campos Ferreira

    (Graduate Program of Natural Resources Engineering of Amazon, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil)

  • Simone Patrícia Aranha da Paz

    (Graduate Program of Natural Resources Engineering of Amazon, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil)

  • Marcelo Costa Santos

    (Graduate Program of Natural Resources Engineering of Amazon, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil)

  • Luiz Gabriel Santos Moreira

    (Faculty of Sanitary and Environmental Engineering, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Corrêa N° 1, Belém 66075-900, Brazil)

  • Neyson Martins Mendonça

    (Faculty of Sanitary and Environmental Engineering, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Corrêa N° 1, Belém 66075-900, Brazil)

  • Fernanda Paula da Costa Assunção

    (Graduate Program of Civil Engineering, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil)

  • Ana Carolina Gomes de Albuquerque de Freitas

    (Graduate Program of Pharmaceutical Sciences, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil)

  • Roseane Maria Ribeiro Costa

    (Graduate Program of Pharmaceutical Sciences, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil)

  • Isaque Wilkson de Sousa Brandão

    (Graduate Program of Chemistry, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil)

  • Carlos Emmerson Ferreira da Costa

    (Graduate Program of Chemistry, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil)

  • Sílvio Alex Pereira da Mota

    (Graduate Program of Chemistry, Universidade Federal do Sul e Sudeste do Pará, Folha 31, Quadra 7, Lote Especial—Nova Marabá, Marabá 68507-590, Brazil)

  • Douglas Alberto Rocha de Castro

    (Centro Universitário Luterano de Manaus—CEULM/ULBRA, Avenida Carlos Drummond de Andrade N° 1460, Manaus 69077-730, Brazil)

  • Sergio Duvoisin

    (Faculty of Chemical Engineering, Universidade do Estado do Amazonas-UEA, Avenida Darcy Vargas N° 1200, Manaus 69050-020, Brazil)

  • Luiz Eduardo Pizarro Borges

    (Laboratory of Catalyst Preparation and Catalytic Cracking, Section of Chemical Engineering, Instituto Militar de Engenharia-IME, Praça General Tibúrcio N° 80, Rio de Janeiro 22290-270, Brazil)

  • Nélio Teixeira Machado

    (Graduate Program of Natural Resources Engineering of Amazon, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil
    Faculty of Sanitary and Environmental Engineering, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Corrêa N° 1, Belém 66075-900, Brazil)

  • Lucas Pinto Bernar

    (Graduate Program of Natural Resources Engineering of Amazon, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil)

Abstract

This study investigated thermal cracking and catalytic upgrading of waste from electric and electronic equipment (WEEE) plastics on a semi-batch reactor coupled to a heated catalyst fixed bed (2-stage vapor cracking). The catalyst used is a Si–Al ash obtained from commercial activated carbon pellets treated with concentrated NaOH solution and calcination. The purpose of the study was to characterize the waste stream through its thermogravimetry analysis and pyrolysis products, study the effect of temperature (350–500 °C) and catalyst quantity (0.0–7.5 %.wt) on yields of reaction products, physical chemical properties, and chemical composition of bio-oil in order to understand and evaluate production of fuels and chemical feedstock by recycling of WEEE plastic through catalytic upgrading. Time-fractioned samples were taken in determined reaction times (15, 30, 45, and 60 min) to study the evolution of cracking reactions during experiment runs through changes to chemical composition (GC/MS). A comparison with other previous work is also presented to show similarities between different feedstocks using the same thermal unit. The results indicate composition of brominated acrylonitrile-butadiene-styrene (ABS), polycarbonate (PC), and high impact polystyrene (HIPS) for the WEEE plastic. The temperature of 350 °C produced better results when considering acid value but presented lower bio-oil yields (38%) and high gas yields (42%). Catalytic upgrading experiments revealed the increased presence of polycyclic aromatic hydrocarbons (PAH) with an increase in viscosity of bio-oil, increase in char yield (from 11% to 24%), and decrease in gas yields (15% to 5%). Chemical composition showed presence of aromatic hydrocarbons such as styrene, methyl-styrene, and diphenyl-propane and nitrogenated compounds such as benzene-butane-nitrile, phenolic compounds, PAHs, and brominated compounds. WEEE plastic pyrolysis is a challenging subject due to contaminant presence and varying composition, and chemical composition evaluation according to reaction time provides interesting insights into the evolution of semi-batch pyrolysis/catalytic upgrading experiments. Standardization and reproducibility of the tool should be conducted to continue the evaluation of pyrolysis and catalytic upgrading of a wide range of feedstocks.

Suggested Citation

  • Augusto Fernando de Freitas Costa & Caio Campos Ferreira & Simone Patrícia Aranha da Paz & Marcelo Costa Santos & Luiz Gabriel Santos Moreira & Neyson Martins Mendonça & Fernanda Paula da Costa Assunç, 2023. "Catalytic Upgrading of Plastic Waste of Electric and Electronic Equipment (WEEE) Pyrolysis Vapors over Si–Al Ash Pellets in a Two-Stage Reactor," Energies, MDPI, vol. 16(1), pages 1-32, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:1:p:541-:d:1023896
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/541/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/541/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Caio Campos Ferreira & Lucas Pinto Bernar & Augusto Fernando de Freitas Costa & Haroldo Jorge da Silva Ribeiro & Marcelo Costa Santos & Nathalia Lobato Moraes & Yasmin Santos Costa & Ana Cláudia Fonse, 2022. "Improving Fuel Properties and Hydrocarbon Content from Residual Fat Pyrolysis Vapors over Activated Red Mud Pellets in Two-Stage Reactor: Optimization of Reaction Time and Catalyst Content," Energies, MDPI, vol. 15(15), pages 1-33, August.
    2. Wong, S.L. & Ngadi, N. & Abdullah, T.A.T. & Inuwa, I.M., 2015. "Current state and future prospects of plastic waste as source of fuel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1167-1180.
    3. Williams, Paul T. & Slaney, Edward, 2007. "Analysis of products from the pyrolysis and liquefaction of single plastics and waste plastic mixtures," Resources, Conservation & Recycling, Elsevier, vol. 51(4), pages 754-769.
    4. Ewa M. Iwanek (nee Wilczkowska) & Donald W. Kirk, 2022. "Application of Slow Pyrolysis to Convert Waste Plastics from a Compost-Reject Stream into Py-Char," Energies, MDPI, vol. 15(9), pages 1-15, April.
    5. Lucas Pinto Bernar & Caio Campos Ferreira & Augusto Fernando de Freitas Costa & Haroldo Jorge da Silva Ribeiro & Wenderson Gomes dos Santos & Lia Martins Pereira & Anderson Mathias Pereira & Nathalia , 2022. "Catalytic Upgrading of Residual Fat Pyrolysis Vapors over Activated Carbon Pellets into Hydrocarbons-like Fuels in a Two-Stage Reactor: Analysis of Hydrocarbons Composition and Physical-Chemistry Prop," Energies, MDPI, vol. 15(13), pages 1-26, June.
    6. Douglas Alberto Rocha de Castro & Haroldo Jorge da Silva Ribeiro & Lauro Henrique Hamoy Guerreiro & Lucas Pinto Bernar & Sami Jonatan Bremer & Marcelo Costa Santo & Hélio da Silva Almeida & Sergio Duv, 2021. "Production of Fuel-Like Fractions by Fractional Distillation of Bio-Oil from Açaí ( Euterpe oleracea Mart.) Seeds Pyrolysis," Energies, MDPI, vol. 14(13), pages 1-27, June.
    7. Zhang, Yayun & Duan, Dengle & Lei, Hanwu & Villota, Elmar & Ruan, Roger, 2019. "Jet fuel production from waste plastics via catalytic pyrolysis with activated carbons," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    8. Hasan, M.M. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Jahirul, M.I., 2021. "Energy recovery from municipal solid waste using pyrolysis technology: A review on current status and developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernanda Paula da Costa Assunção & Diogo Oliveira Pereira & Jéssica Cristina Conte da Silva & Jorge Fernando Hungria Ferreira & Kelly Christina Alves Bezerra & Lucas Pinto Bernar & Caio Campos Ferreir, 2022. "A Systematic Approach to Thermochemical Treatment of Municipal Household Solid Waste into Valuable Products: Analysis of Routes, Gravimetric Analysis, Pre-Treatment of Solid Mixtures, Thermochemical P," Energies, MDPI, vol. 15(21), pages 1-30, October.
    2. Li, Jinhu & Ye, Xinhao & Burra, Kiran G. & Lu, Wei & Wang, Zhiwei & Liu, Xuan & Gupta, Ashwani K., 2023. "Synergistic effects during co-pyrolysis and co-gasification of polypropylene and polystyrene," Applied Energy, Elsevier, vol. 336(C).
    3. Caio Campos Ferreira & Lucas Pinto Bernar & Augusto Fernando de Freitas Costa & Haroldo Jorge da Silva Ribeiro & Marcelo Costa Santos & Nathalia Lobato Moraes & Yasmin Santos Costa & Ana Cláudia Fonse, 2022. "Improving Fuel Properties and Hydrocarbon Content from Residual Fat Pyrolysis Vapors over Activated Red Mud Pellets in Two-Stage Reactor: Optimization of Reaction Time and Catalyst Content," Energies, MDPI, vol. 15(15), pages 1-33, August.
    4. Gérson Daniel Valdez & Flávio Pinheiro Valois & Sammy Jonatan Bremer & Kelly Christina Alves Bezerra & Lauro Henrique Hamoy Guerreiro & Marcelo Costa Santos & Lucas Pinto Bernar & Waldeci Paraguassu F, 2023. "Improving the Bio-Oil Quality of Residual Biomass Pyrolysis by Chemical Activation: Effect of Alkalis and Acid Pre-Treatment," Energies, MDPI, vol. 16(7), pages 1-18, March.
    5. Mirkarimi, S.M.R. & Bensaid, S. & Chiaramonti, D., 2022. "Conversion of mixed waste plastic into fuel for diesel engines through pyrolysis process: A review," Applied Energy, Elsevier, vol. 327(C).
    6. Rahman, Md Hafizur & Bhoi, Prakashbhai R. & Menezes, Pradeep L., 2023. "Pyrolysis of waste plastics into fuels and chemicals: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    7. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    8. Ana B. Cuevas & David E. Leiva-Candia & M. P. Dorado, 2024. "An Overview of Pyrolysis as Waste Treatment to Produce Eco-Energy," Energies, MDPI, vol. 17(12), pages 1-32, June.
    9. Bassey, Uduak & Sarquah, Khadija & Hartmann, Michael & Tom, Abasi-ofon & Beck, Gesa & Antwi, Edward & Narra, Satyanarayana & Nelles, Michael, 2023. "Thermal treatment options for single-use, multilayered and composite waste plastics in Africa," Energy, Elsevier, vol. 270(C).
    10. Ye, Lian & Zhang, Jianliang & Wang, Guangwei & Wang, Chen & Mao, Xiaoming & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Li, Jinhua & Wang, Chuan, 2023. "Feasibility analysis of plastic and biomass hydrochar for blast furnace injection," Energy, Elsevier, vol. 263(PD).
    11. Zhang, Shiyu & Bie, Xuan & Qian, Zheng & Wu, Mengna & Li, Kaile & Li, Qinghai & Zhang, Yanguo & Zhou, Hui, 2024. "Synergistic interactions between cellulose and plastics (PET, HDPE, and PS) during CO2 gasification-catalytic reforming on Ni/CeO2 nanorod catalyst," Applied Energy, Elsevier, vol. 361(C).
    12. Yuanjia Zhang & Xueru Chen & Leilei Cheng & Jing Gu & Yulin Xu, 2023. "Conversion of Polyethylene to High-Yield Fuel Oil at Low Temperatures and Atmospheric Initial Pressure," IJERPH, MDPI, vol. 20(5), pages 1-14, February.
    13. Suarez, Mayra Alejandra & Januszewicz, Katarzyna & Cortazar, Maria & Lopez, Gartzen & Santamaria, Laura & Olazar, Martin & Artetxe, Maite & Amutio, Maider, 2024. "Selective H2 production from plastic waste through pyrolysis and in-line oxidative steam reforming," Energy, Elsevier, vol. 302(C).
    14. Lin, Xiaona & Kong, Lingshuai & Ren, Xiajin & Zhang, Donghong & Cai, Hongzhen & Lei, Hanwu, 2021. "Catalytic co-pyrolysis of torrefied poplar wood and high-density polyethylene over hierarchical HZSM-5 for mono-aromatics production," Renewable Energy, Elsevier, vol. 164(C), pages 87-95.
    15. Park, Ki-Bum & Choi, Min-Jun & Chae, Da-Yeong & Jung, Jaeheum & Kim, Joo-Sik, 2022. "Separate two-step and continuous two-stage pyrolysis of a waste plastic mixture to produce a chlorine-depleted oil," Energy, Elsevier, vol. 244(PA).
    16. Yang, Haiping & Chen, Zhiqun & Chen, Wei & Chen, Yingquan & Wang, Xianhua & Chen, Hanping, 2020. "Role of porous structure and active O-containing groups of activated biochar catalyst during biomass catalytic pyrolysis," Energy, Elsevier, vol. 210(C).
    17. Chen, Wei & Fang, Yang & Li, Kaixu & Chen, Zhiqun & Xia, Mingwei & Gong, Meng & Chen, Yingquan & Yang, Haiping & Tu, Xin & Chen, Hanping, 2020. "Bamboo wastes catalytic pyrolysis with N-doped biochar catalyst for phenols products," Applied Energy, Elsevier, vol. 260(C).
    18. Huo, Erguang & Duan, Dengle & Lei, Hanwu & Liu, Chao & Zhang, Yayun & Wu, Jie & Zhao, Yunfeng & Huang, Zhiyang & Qian, Moriko & Zhang, Qingfa & Lin, Xiaona & Wang, Chenxi & Mateo, Wendy & Villota, Elm, 2020. "Phenols production form Douglas fir catalytic pyrolysis with MgO and biomass-derived activated carbon catalysts," Energy, Elsevier, vol. 199(C).
    19. Mohammad I. Jahirul & Farhad M. Hossain & Mohammad G. Rasul & Ashfaque Ahmed Chowdhury, 2021. "A Review on the Thermochemical Recycling of Waste Tyres to Oil for Automobile Engine Application," Energies, MDPI, vol. 14(13), pages 1-18, June.
    20. Hasan, M.M. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Jahirul, M.I., 2021. "Energy recovery from municipal solid waste using pyrolysis technology: A review on current status and developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:1:p:541-:d:1023896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.