IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i20p7721-d947020.html
   My bibliography  Save this article

A Theoretical Model of the Gasification Rate of Biomass and Its Experimental Confirmation

Author

Listed:
  • Savelii Kukharets

    (Department of Mechanics and Agroecosystems Engineering, Polissia National University, Staryi Blvd., 7, 10008 Zhytomyr, Ukraine)

  • Gennadii Golub

    (Department of Tractors, Automobiles and Bioenergy Resources, National University of Life and Environmental Sciences of Ukraine, Heroev Oborony Str., 15B, 03040 Kyiv, Ukraine)

  • Marek Wrobel

    (Faculty of Production and Power Engineering, University of Agriculture in Krakow, 30-149 Krakow, Poland)

  • Olena Sukmaniuk

    (Department Machines Processes and Agroengineering Equipment, Polissia National University, Staryi Blvd., 7, 10008 Zhytomyr, Ukraine)

  • Krzysztof Mudryk

    (Faculty of Production and Power Engineering, University of Agriculture in Krakow, 30-149 Krakow, Poland)

  • Taras Hutsol

    (Department of Mechanics and Agroecosystems Engineering, Polissia National University, Staryi Blvd., 7, 10008 Zhytomyr, Ukraine)

  • Algirdas Jasinskas

    (Department of Agricultural Engineering and Safety, Faculty of Engineering, Vytautas Magnus University, Agriculture Academy, Studentu Str., 15A, Akademija, LT-53362 Kaunas, Lithuania)

  • Marcin Jewiarz

    (Faculty of Production and Power Engineering, University of Agriculture in Krakow, 30-149 Krakow, Poland)

  • Jonas Cesna

    (Department of Mechanical, Energy and Biotechnology Engineering, Vytautas Magnus University, Agriculture Academy, Studentu Str., 11, Akademija, LT-53362 Kaunas, Lithuania)

  • Iryna Horetska

    (Department of Mechanics and Agroecosystems Engineering, Polissia National University, Staryi Blvd., 7, 10008 Zhytomyr, Ukraine
    Faculty of Production and Power Engineering, University of Agriculture in Krakow, 30-149 Krakow, Poland)

Abstract

The gasification rate of fuel, biomass gasification in particular, is an important parameter which is worth considering in the process of creating a gasifier with a continuous operation process. The gasification of biomass is a complex thermochemical process. The theoretical and practical studies of the gasification rate of biomass are complicated because of a high thermochemical rate of reactions in the functioning zones of a gasifier. The complexity of the study prevents the achievement of the required accuracy of the analytical model of the gasification rate of biomass. The known theoretical models of the gasification rate only partially describe the dynamics of the gasification rate of biomass. Moreover, most scientific studies are focused on establishing the effects of gasifier parameters and the gasification process on the quality indicators of the received gas but not on the gasification rate of fuel. To build an accurate model of the gasification rate the authors propose a series of experimental studies in a well-defined range of the parameters of a gasifier. The paper suggests a simple mathematical model of the gasification rate of biomass, which is proportional to the amount of plant biomass that remained non-gasified. The coefficients of the gasification rate for straw pellets, wood pellets and wood in pieces have been determined. Under a minimal air supply into an active zone of a gasifier (0.00088 m 3 /s) a coefficient of gasification rate is nearly the same for the test fuel materials and it differs by 4.7% between wood pellets and straw pellets. When the air supply increases, the gap between the coefficients increases as well and it reaches 9.44 × 10 −5 c −1 for wood pellets, 1.05 × 10 −4 c −1 for straw pellets and 8.64 × 10 −5 c −1 for wood in pieces under air supply into an active zone of a gas generator of 0.01169 m 3 /s. Straw pellets have the highest gasification rate and wood in pieces has the lowest gasification rate.

Suggested Citation

  • Savelii Kukharets & Gennadii Golub & Marek Wrobel & Olena Sukmaniuk & Krzysztof Mudryk & Taras Hutsol & Algirdas Jasinskas & Marcin Jewiarz & Jonas Cesna & Iryna Horetska, 2022. "A Theoretical Model of the Gasification Rate of Biomass and Its Experimental Confirmation," Energies, MDPI, vol. 15(20), pages 1-15, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7721-:d:947020
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/20/7721/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/20/7721/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ghulamullah Maitlo & Imran Ali & Kashif Hussain Mangi & Safdar Ali & Hubdar Ali Maitlo & Imran Nazir Unar & Abdul Majeed Pirzada, 2022. "Thermochemical Conversion of Biomass for Syngas Production: Current Status and Future Trends," Sustainability, MDPI, vol. 14(5), pages 1-30, February.
    2. Pulla Rose Havilah & Amit Kumar Sharma & Gopalakrishnan Govindasamy & Leonidas Matsakas & Alok Patel, 2022. "Biomass Gasification in Downdraft Gasifiers: A Technical Review on Production, Up-Gradation and Application of Synthesis Gas," Energies, MDPI, vol. 15(11), pages 1-19, May.
    3. Rolandas Paulauskas & Kęstutis Zakarauskas & Nerijus Striūgas, 2021. "An Intensification of Biomass and Waste Char Gasification in a Gasifier," Energies, MDPI, vol. 14(7), pages 1-11, April.
    4. Marco Puglia & Nicolò Morselli & Simone Pedrazzi & Paolo Tartarini & Giulio Allesina & Alberto Muscio, 2021. "Specific and Cumulative Exhaust Gas Emissions in Micro-Scale Generators Fueled by Syngas from Biomass Gasification," Sustainability, MDPI, vol. 13(6), pages 1-13, March.
    5. Jerzy Chojnacki & Jan Najser & Krzysztof Rokosz & Vaclav Peer & Jan Kielar & Bogusława Berner, 2020. "Syngas Composition: Gasification of Wood Pellet with Water Steam through a Reactor with Continuous Biomass Feed System," Energies, MDPI, vol. 13(17), pages 1-14, August.
    6. Giada La Scalia & Luca Adelfio & Concetta Manuela La Fata & Rosa Micale, 2022. "Economic and Environmental Assessment of Biomass Power Plants in Southern Italy," Sustainability, MDPI, vol. 14(15), pages 1-14, August.
    7. Algirdas Jasinskas & Dionizas Streikus & Egidijus Šarauskis & Mečys Palšauskas & Kęstutis Venslauskas, 2020. "Energy Evaluation and Greenhouse Gas Emissions of Reed Plant Pelletizing and Utilization as Solid Biofuel," Energies, MDPI, vol. 13(6), pages 1-14, March.
    8. Sahar Safarian & Magnus Rydén & Matty Janssen, 2022. "Development and Comparison of Thermodynamic Equilibrium and Kinetic Approaches for Biomass Pyrolysis Modeling," Energies, MDPI, vol. 15(11), pages 1-18, May.
    9. José Juan Alvarado Flores & Jorge Víctor Alcaraz Vera & María Liliana Ávalos Rodríguez & Luis Bernardo López Sosa & José Guadalupe Rutiaga Quiñones & Luís Fernando Pintor Ibarra & Francisco Márquez Mo, 2022. "Analysis of Pyrolysis Kinetic Parameters Based on Various Mathematical Models for More than Twenty Different Biomasses: A Review," Energies, MDPI, vol. 15(18), pages 1-19, September.
    10. Ratnadhariya, J.K. & Channiwala, S.A., 2009. "Three zone equilibrium and kinetic free modeling of biomass gasifier – a novel approach," Renewable Energy, Elsevier, vol. 34(4), pages 1050-1058.
    11. Ghorbani, Saba & Atashkari, Kazem & Borji, Mehdi, 2022. "Three-stage model-based evaluation of a downdraft biomass gasifier," Renewable Energy, Elsevier, vol. 194(C), pages 734-745.
    12. Anukam, Anthony & Mamphweli, Sampson & Reddy, Prashant & Meyer, Edson & Okoh, Omobola, 2016. "Pre-processing of sugarcane bagasse for gasification in a downdraft biomass gasifier system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 775-801.
    13. M. Shahabuddin & Tanvir Alam, 2022. "Gasification of Solid Fuels (Coal, Biomass and MSW): Overview, Challenges and Mitigation Strategies," Energies, MDPI, vol. 15(12), pages 1-20, June.
    14. Oleg Kucher & Taras Hutsol & Szymon Glowacki & Iryna Andreitseva & Anatolii Dibrova & Andrii Muzychenko & Anna Szeląg-Sikora & Agnieszka Szparaga & Sławomir Kocira, 2022. "Energy Potential of Biogas Production in Ukraine," Energies, MDPI, vol. 15(5), pages 1-22, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Savelii Kukharets & Algirdas Jasinskas & Gennadii Golub & Olena Sukmaniuk & Taras Hutsol & Krzysztof Mudryk & Jonas Čėsna & Szymon Glowacki & Iryna Horetska, 2023. "The Experimental Study of the Efficiency of the Gasification Process of the Fast-Growing Willow Biomass in a Downdraft Gasifier," Energies, MDPI, vol. 16(2), pages 1-12, January.
    2. Santa Margarida Santos & Ana Carolina Assis & Leandro Gomes & Catarina Nobre & Paulo Brito, 2022. "Waste Gasification Technologies: A Brief Overview," Waste, MDPI, vol. 1(1), pages 1-26, December.
    3. Saaida Khlifi & Marzouk Lajili & Patrick Perré & Victor Pozzobon, 2022. "A Numerical Study of Turbulent Combustion of a Lignocellulosic Gas Mixture in an Updraft Fixed Bed Reactor," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    4. Marco Mancini & Andreas Schwabauer, 2023. "On the Thermal Stability of a Counter-Current Fixed-Bed Gasifier," Energies, MDPI, vol. 16(9), pages 1-36, April.
    5. Verma, Shivpal & Dregulo, Andrei Mikhailovich & Kumar, Vinay & Bhargava, Preeti Chaturvedi & Khan, Nawaz & Singh, Anuradha & Sun, Xinwei & Sindhu, Raveendran & Binod, Parameswaran & Zhang, Zengqiang &, 2023. "Reaction engineering during biomass gasification and conversion to energy," Energy, Elsevier, vol. 266(C).
    6. Dan Liu & Da Teng & Yan Zhu & Xingde Wang & Hanyang Wang, 2023. "Optimization of Process Parameters for Pellet Production from Corn Stalk Rinds Using Box–Behnken Design," Energies, MDPI, vol. 16(12), pages 1-20, June.
    7. Damartzis, T. & Zabaniotou, A., 2011. "Thermochemical conversion of biomass to second generation biofuels through integrated process design--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 366-378, January.
    8. Martínez, Laura V. & Rubiano, Jairo E. & Figueredo, Manuel & Gómez, María F., 2020. "Experimental study on the performance of gasification of corncobs in a downdraft fixed bed gasifier at various conditions," Renewable Energy, Elsevier, vol. 148(C), pages 1216-1226.
    9. Ahmed M. Salem & Harnek S. Dhami & Manosh C. Paul, 2022. "Syngas Production and Combined Heat and Power from Scottish Agricultural Waste Gasification—A Computational Study," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    10. Rodriguez-Alejandro, David A. & Nam, Hyungseok & Maglinao, Amado L. & Capareda, Sergio C. & Aguilera-Alvarado, Alberto F., 2016. "Development of a modified equilibrium model for biomass pilot-scale fluidized bed gasifier performance predictions," Energy, Elsevier, vol. 115(P1), pages 1092-1108.
    11. Salem, Ahmed M. & Abd Elbar, Ayman Refat, 2023. "The feasibility and performance of using producer gas as a gasifying medium," Energy, Elsevier, vol. 283(C).
    12. Nicodème, Thibault & Berchem, Thomas & Jacquet, Nicolas & Richel, Aurore, 2018. "Thermochemical conversion of sugar industry by-products to biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 151-159.
    13. Nadia Cerone & Francesco Zimbardi, 2021. "Effects of Oxygen and Steam Equivalence Ratios on Updraft Gasification of Biomass," Energies, MDPI, vol. 14(9), pages 1-18, May.
    14. Rolandas Paulauskas & Kęstutis Zakarauskas & Nerijus Striūgas, 2021. "An Intensification of Biomass and Waste Char Gasification in a Gasifier," Energies, MDPI, vol. 14(7), pages 1-11, April.
    15. Shadbahr, Jalil & Ebadian, Mahmood & Gonzales-Calienes, Giovanna & Kannangara, Miyuru & Ahmadi, Leila & Bensebaa, Farid, 2022. "Impact of waste management and conversion technologies on cost and carbon footprint - Case studies in rural and urban cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    16. Fugang Zhu & Laihong Shen & Pengcheng Xu & Haoran Yuan & Ming Hu & Jingwei Qi & Yong Chen, 2022. "Numerical Simulation of an Improved Updraft Biomass Gasifier Based on Aspen Plus," IJERPH, MDPI, vol. 19(24), pages 1-11, December.
    17. Motta, Ingrid Lopes & Miranda, Nahieh Toscano & Maciel Filho, Rubens & Wolf Maciel, Maria Regina, 2018. "Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 998-1023.
    18. Anthony Ike Anukam & Jonas Berghel & Stefan Frodeson & Elizabeth Bosede Famewo & Pardon Nyamukamba, 2019. "Characterization of Pure and Blended Pellets Made from Norway Spruce and Pea Starch: A Comparative Study of Bonding Mechanism Relevant to Quality," Energies, MDPI, vol. 12(23), pages 1-22, November.
    19. Sylwia Polesek-Karczewska & Paulina Hercel & Behrouz Adibimanesh & Izabela Wardach-Świȩcicka, 2024. "Towards Sustainable Biomass Conversion Technologies: A Review of Mathematical Modeling Approaches," Sustainability, MDPI, vol. 16(19), pages 1-43, October.
    20. Rosa, Lorenzo & Mazzotti, Marco, 2022. "Potential for hydrogen production from sustainable biomass with carbon capture and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7721-:d:947020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.