IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5244-d866803.html
   My bibliography  Save this article

An Overview about Si, Superjunction, SiC and GaN Power MOSFET Technologies in Power Electronics Applications

Author

Listed:
  • Edemar O. Prado

    (Energy Efficiency Lab, LABEFEA, Federal University of Bahia, Salvador 40170-110, BA, Brazil
    Power Electronics and Control Research Group, GEPOC, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil)

  • Pedro C. Bolsi

    (Energy Efficiency Lab, LABEFEA, Federal University of Bahia, Salvador 40170-110, BA, Brazil
    Power Electronics and Control Research Group, GEPOC, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil)

  • Hamiltom C. Sartori

    (Power Electronics and Control Research Group, GEPOC, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil)

  • José R. Pinheiro

    (Energy Efficiency Lab, LABEFEA, Federal University of Bahia, Salvador 40170-110, BA, Brazil
    Power Electronics and Control Research Group, GEPOC, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil)

Abstract

This work presents a comparative analysis among four power MOSFET technologies: conventional Silicon (Si), Superjunction (SJ), Silicon Carbide (SiC) and Gallium Nitride (GaN), indicating the voltage, current and frequency ranges of the best performance for each technology. For this, a database with 91 power MOSFETs from different manufacturers was built. MOSFET losses are related to individual characteristics of the technology: drain-source on-state resistance, input capacitance, Miller capacitance and internal gate resistance. The total losses are evaluated considering a drain-source voltage of 400 V, power levels from 1 kW to 16 kW (1 A–40 A) and frequencies from 1 kHz to 500 kHz. A methodology for selecting power MOSFETs in power electronics applications is also presented.

Suggested Citation

  • Edemar O. Prado & Pedro C. Bolsi & Hamiltom C. Sartori & José R. Pinheiro, 2022. "An Overview about Si, Superjunction, SiC and GaN Power MOSFET Technologies in Power Electronics Applications," Energies, MDPI, vol. 15(14), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5244-:d:866803
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5244/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5244/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ding, Xiaofeng & Du, Min & Zhou, Tong & Guo, Hong & Zhang, Chengming, 2017. "Comprehensive comparison between silicon carbide MOSFETs and silicon IGBTs based traction systems for electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 626-634.
    2. Kalantar, M. & Mousavi G., S.M., 2010. "Posicast control within feedback structure for a DC-DC single ended primary inductor converter in renewable energy applications," Applied Energy, Elsevier, vol. 87(10), pages 3110-3114, October.
    3. Ding, Xiaofeng & Chen, Feida & Du, Min & Guo, Hong & Ren, Suping, 2017. "Effects of silicon carbide MOSFETs on the efficiency and power quality of a microgrid-connected inverter," Applied Energy, Elsevier, vol. 201(C), pages 270-283.
    4. Han, Feng & Guo, Hong & Ding, Xiaofeng, 2021. "Design and optimization of a liquid cooled heat sink for a motor inverter in electric vehicles," Applied Energy, Elsevier, vol. 291(C).
    5. Pedro C. Bolsi & Edemar O. Prado & Hamiltom C. Sartori & João Manuel Lenz & José Renes Pinheiro, 2022. "LCL Filter Parameter and Hardware Design Methodology for Minimum Volume Considering Capacitor Lifetimes," Energies, MDPI, vol. 15(12), pages 1-20, June.
    6. Ding, Xiaofeng & Lu, Peng & Shan, Zhenyu, 2021. "A high-accuracy switching loss model of SiC MOSFETs in a motor drive for electric vehicles," Applied Energy, Elsevier, vol. 291(C).
    7. Kwang-Hyung Cha & Chang-Tae Ju & Rae-Young Kim, 2020. "Analysis and Evaluation of WBG Power Device in High Frequency Induction Heating Application," Energies, MDPI, vol. 13(20), pages 1-15, October.
    8. Saravanan, S. & Ramesh Babu, N., 2017. "Analysis and implementation of high step-up DC-DC converter for PV based grid application," Applied Energy, Elsevier, vol. 190(C), pages 64-72.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edemar O. Prado & Pedro C. Bolsi & Hamiltom C. Sartori & José R. Pinheiro, 2023. "Design of Uninterruptible Power Supply Inverters for Different Modulation Techniques Using Pareto Front for Cost and Efficiency Optimization," Energies, MDPI, vol. 16(3), pages 1-16, January.
    2. Sezer Aslan & Metin Ozturk & Nihan Altintas, 2023. "A Comparative Evaluation of Wide-Bandgap Semiconductors for High-Performance Domestic Induction Heating," Energies, MDPI, vol. 16(10), pages 1-16, May.
    3. Ersan Kabalci & Aydin Boyar, 2022. "Highly Efficient Interleaved Solar Converter Controlled with Extended Kalman Filter MPPT," Energies, MDPI, vol. 15(21), pages 1-24, October.
    4. Gang Lyu & Hamid Ali & Hongrui Tan & Lyuzhang Peng & Xiaofeng Ding, 2024. "Review on Short-Circuit Protection Methods for SiC MOSFETs," Energies, MDPI, vol. 17(17), pages 1-22, September.
    5. Salvatore Musumeci & Vincenzo Barba, 2023. "Gallium Nitride Power Devices in Power Electronics Applications: State of Art and Perspectives," Energies, MDPI, vol. 16(9), pages 1-18, May.
    6. Nurbanu Catalbas & Ahmet Gungor Pakfiliz & Gokhan Soysal, 2024. "Multilevel Aircraft-Inverter Design Based on Wavelet PWM for More Electric Aircraft," Energies, MDPI, vol. 17(9), pages 1-23, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Qingbo & Zhang, Chengming & Li, Liyi & Gerada, David & Zhang, Jiangpeng & Wang, Mingyi, 2017. "Design and implementation of a loss optimization control for electric vehicle in-wheel permanent-magnet synchronous motor direct drive system," Applied Energy, Elsevier, vol. 204(C), pages 1317-1332.
    2. Zhang, Jun & Du, Xiong & Qian, Cheng, 2021. "Lifetime improvement for wind power generation system based on optimal effectiveness of thermal management," Applied Energy, Elsevier, vol. 286(C).
    3. Ersan Kabalci & Aydin Boyar, 2022. "Highly Efficient Interleaved Solar Converter Controlled with Extended Kalman Filter MPPT," Energies, MDPI, vol. 15(21), pages 1-24, October.
    4. Han, Feng & Guo, Hong & Ding, Xiaofeng, 2021. "Design and optimization of a liquid cooled heat sink for a motor inverter in electric vehicles," Applied Energy, Elsevier, vol. 291(C).
    5. Ding, Xiaofeng & Guo, Hong & Xiong, Rui & Chen, Feida & Zhang, Donghuai & Gerada, Chris, 2017. "A new strategy of efficiency enhancement for traction systems in electric vehicles," Applied Energy, Elsevier, vol. 205(C), pages 880-891.
    6. Jerzy Barglik & Adrian Smagór & Albert Smalcerz & Debela Geneti Desisa, 2021. "Induction Heating of Gear Wheels in Consecutive Contour Hardening Process," Energies, MDPI, vol. 14(13), pages 1-14, June.
    7. Boud Verbrugge & Haaris Rasool & Mohammed Mahedi Hasan & Sajib Chakraborty & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2022. "Reliability Assessment of SiC-Based Depot Charging Infrastructure with Smart and Bidirectional (V2X) Charging Strategies for Electric Buses," Energies, MDPI, vol. 16(1), pages 1-15, December.
    8. Marcin Witczak & Marcin Mrugalski & Bogdan Lipiec, 2021. "Remaining Useful Life Prediction of MOSFETs via the Takagi–Sugeno Framework," Energies, MDPI, vol. 14(8), pages 1-23, April.
    9. Xiaofeng Ding & Min Du & Jiawei Cheng & Feida Chen & Suping Ren & Hong Guo, 2017. "Impact of Silicon Carbide Devices on the Dynamic Performance of Permanent Magnet Synchronous Motor Drive Systems for Electric Vehicles," Energies, MDPI, vol. 10(3), pages 1-19, March.
    10. Amir, Asim & Amir, Aamir & Che, Hang Seng & Elkhateb, Ahmad & Rahim, Nasrudin Abd, 2019. "Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems," Renewable Energy, Elsevier, vol. 136(C), pages 1147-1163.
    11. Zhifu, Wang & Yupu, Wang & Yinan, Rong, 2017. "Design of closed-loop control system for a bidirectional full bridge DC/DC converter," Applied Energy, Elsevier, vol. 194(C), pages 617-625.
    12. Thanaset Thosdeekoraphat & Kittisak Tanthai & Kachaporn Lhathum & Supawat Kotchapradit & Samran Santalunai & Chanchai Thongsopa, 2023. "The Design of a Large-Scale Induction Heating Power Source for Organic Waste Digesters to Produce Fertilizer," Energies, MDPI, vol. 16(5), pages 1-20, February.
    13. Edemar O. Prado & Pedro C. Bolsi & Hamiltom C. Sartori & José R. Pinheiro, 2023. "Design of Uninterruptible Power Supply Inverters for Different Modulation Techniques Using Pareto Front for Cost and Efficiency Optimization," Energies, MDPI, vol. 16(3), pages 1-16, January.
    14. Wang, Qin & Yao, Wei & Fang, Jiakun & Ai, Xiaomeng & Wen, Jinyu & Yang, Xiaobo & Xie, Hailian & Huang, Xing, 2020. "Dynamic modeling and small signal stability analysis of distributed photovoltaic grid-connected system with large scale of panel level DC optimizers," Applied Energy, Elsevier, vol. 259(C).
    15. Yijun Li & Stéphane Roux & Cathy Castelain & Yilin Fan & Lingai Luo, 2023. "Design and Optimization of Heat Sinks for the Liquid Cooling of Electronics with Multiple Heat Sources: A Literature Review," Energies, MDPI, vol. 16(22), pages 1-26, November.
    16. Yanming Xu & Carl Ngai Man Ho & Avishek Ghosh & Dharshana Muthumuni, 2021. "Generalized Behavioral Modelling Methodology of Switch-Diode Cell for Power Loss Prediction in Electromagnetic Transient Simulation," Energies, MDPI, vol. 14(5), pages 1-23, March.
    17. Guilherme V. Hollweg & Shahid A. Khan & Shivam Chaturvedi & Yaoyu Fan & Mengqi Wang & Wencong Su, 2023. "Grid-Connected Converters: A Brief Survey of Topologies, Output Filters, Current Control, and Weak Grids Operation," Energies, MDPI, vol. 16(9), pages 1-31, April.
    18. Bin Wang & Qiangsong Zhao & Gong Zhang & Hongwei Zhang & Kaiyue Liu & Xuebin Yue, 2023. "Novel Active Damping Design Based on a Biquad Filter for an LLCL Grid-Tied Inverter," Energies, MDPI, vol. 16(3), pages 1-15, January.
    19. M. Karthikeyan & R. Elavarasu & P. Ramesh & C. Bharatiraja & P. Sanjeevikumar & Lucian Mihet-Popa & Massimo Mitolo, 2020. "A Hybridization of Cuk and Boost Converter Using Single Switch with Higher Voltage Gain Compatibility," Energies, MDPI, vol. 13(9), pages 1-24, May.
    20. Wang, Hanqing & Gaillard, Arnaud & Hissel, Daniel, 2019. "A review of DC/DC converter-based electrochemical impedance spectroscopy for fuel cell electric vehicles," Renewable Energy, Elsevier, vol. 141(C), pages 124-138.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5244-:d:866803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.