IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i9p2312-d354589.html
   My bibliography  Save this article

A Hybridization of Cuk and Boost Converter Using Single Switch with Higher Voltage Gain Compatibility

Author

Listed:
  • M. Karthikeyan

    (Department of Electrical and Electronics Engineering, University College of Engineering, Pattukkottai 614701, Tamilnadu, India)

  • R. Elavarasu

    (Department of Electrical and Electronics Engineering, Rajalakshmi Institute of Technology, Chennai 600124, Tamilnadu, India)

  • P. Ramesh

    (Department of Electrical and Electronics Engineering, CMR Institute of Technology, Bengaluru 560037, India)

  • C. Bharatiraja

    (Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Chennai 603 203, India)

  • P. Sanjeevikumar

    (Department of Energy Technology, Aalborg University, 6700 Esbjerg, Denmark)

  • Lucian Mihet-Popa

    (Faculty of Engineering, Østfold University College, Kobberslagerstredet 5, 1671 Kråkeroy-Fredrikstad, Norway)

  • Massimo Mitolo

    (School of Integrated Design, Engineering and Automation Irvine Valley College, Irvine, CA 92618, USA)

Abstract

In the current era, the desire for high boost DC-to-DC converter development has increased. Notably, there has been voltage gain improvement without adding extra power switches, and a large number of passive components have advanced. Magnetically coupled isolated converters are suggested for the higher voltage gain. These converters use large size inductors, and thus the non-isolated traditional boost, Cuk and Sepic converters are modified to increase their gain by adding an extra switch, inductors and capacitors. These converters increase circuit complexity and become bulky. In this paper, we present a hybrid high voltage gain non-isolated single switch converter for photovoltaic applications. The proposed converter connects the standard conventional Cuk and boost converter in parallel for providing continuous current mode operation with the help of a single power switch, which gives less voltage stress on controlled switch and diodes. The proposed hybrid topology uses a single switch with a lower component-count and provides a higher voltage gain than non-isolated traditional converters. The converter circuit mode of operation, operating performance, mathematical derivations and steady-state exploration and circuit parameters design procedures are deliberated in detail. The proposed hybrid converter circuit components, voltage gain and performance, were compared with other topologies in the literature. The MATLAB/Simulink simulation study and microcontroller-based experimental laboratory prototype of 150 W were implemented. The simulation study and experimentation results were confirmed to be a satisfactory agreement with the theoretical analysis. This topology produced non-inverting output in continuous input current mode using a single switch with high voltage gain (≈5.116 gain) with a maximum efficiency of 92.2% under full load.

Suggested Citation

  • M. Karthikeyan & R. Elavarasu & P. Ramesh & C. Bharatiraja & P. Sanjeevikumar & Lucian Mihet-Popa & Massimo Mitolo, 2020. "A Hybridization of Cuk and Boost Converter Using Single Switch with Higher Voltage Gain Compatibility," Energies, MDPI, vol. 13(9), pages 1-24, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2312-:d:354589
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/9/2312/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/9/2312/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nouha Mansouri & Abderezak Lashab & Dezso Sera & Josep M. Guerrero & Adnen Cherif, 2019. "Large Photovoltaic Power Plants Integration: A Review of Challenges and Solutions," Energies, MDPI, vol. 12(19), pages 1-16, October.
    2. Shin-Ju Chen & Sung-Pei Yang & Chao-Ming Huang & Huann-Ming Chou & Meng-Jie Shen, 2018. "Interleaved High Step-Up DC-DC Converter Based on Voltage Multiplier Cell and Voltage-Stacking Techniques for Renewable Energy Applications," Energies, MDPI, vol. 11(7), pages 1-17, June.
    3. Saravanan, S. & Ramesh Babu, N., 2017. "Analysis and implementation of high step-up DC-DC converter for PV based grid application," Applied Energy, Elsevier, vol. 190(C), pages 64-72.
    4. Eccher, M. & Salemi, A. & Turrini, S. & Brusa, R.S., 2015. "Measurements of power transfer efficiency in CPV cell-array models using individual DC–DC converters," Applied Energy, Elsevier, vol. 142(C), pages 396-406.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salvatore Musumeci, 2023. "Energy Conversion Using Electronic Power Converters: Technologies and Applications," Energies, MDPI, vol. 16(8), pages 1-9, April.
    2. Ahmad Alzahrani & Pourya Shamsi & Mehdi Ferdowsi, 2020. "Interleaved Multistage Step-Up Topologies with Voltage Multiplier Cells," Energies, MDPI, vol. 13(22), pages 1-18, November.
    3. Vibha Kamaraj & N. Chellammal & Bharatiraja Chokkalingam & Josiah Lange Munda, 2020. "Minimization of Cross-Regulation in PV and Battery Connected Multi-Input Multi-Output DC to DC Converter," Energies, MDPI, vol. 13(24), pages 1-29, December.
    4. Julio C. Rosas-Caro & Pedro M. García-Vite & Alma Rodríguez & Abraham Mendoza & Avelina Alejo-Reyes & Erik Cuevas & Francisco Beltran-Carbajal, 2021. "Differential Evolution Based Algorithm for Optimal Current Ripple Cancelation in an Unequal Interleaved Power Converter," Mathematics, MDPI, vol. 9(21), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bradai, R. & Boukenoui, R. & Kheldoun, A. & Salhi, H. & Ghanes, M. & Barbot, J-P. & Mellit, A., 2017. "Experimental assessment of new fast MPPT algorithm for PV systems under non-uniform irradiance conditions," Applied Energy, Elsevier, vol. 199(C), pages 416-429.
    2. Amir, Asim & Amir, Aamir & Che, Hang Seng & Elkhateb, Ahmad & Rahim, Nasrudin Abd, 2019. "Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems," Renewable Energy, Elsevier, vol. 136(C), pages 1147-1163.
    3. Zhifu, Wang & Yupu, Wang & Yinan, Rong, 2017. "Design of closed-loop control system for a bidirectional full bridge DC/DC converter," Applied Energy, Elsevier, vol. 194(C), pages 617-625.
    4. Feng Wang & Yutao Luo & Hongluo Li & Xiaotong Xu, 2019. "Switching Characteristics Optimization of Two-Phase Interleaved Bidirectional DC/DC for Electric Vehicles," Energies, MDPI, vol. 12(3), pages 1-14, January.
    5. Shin-Ju Chen & Sung-Pei Yang & Chao-Ming Huang & Ping-Sheng Huang, 2023. "Analysis and Design of a New High Voltage Gain Interleaved DC–DC Converter with Three-Winding Coupled Inductors for Renewable Energy Systems," Energies, MDPI, vol. 16(9), pages 1-23, May.
    6. Dhanuja Lekshmi J & Zakir Hussain Rather & Bikash C Pal, 2021. "A New Tool to Assess Maximum Permissible Solar PV Penetration in a Power System," Energies, MDPI, vol. 14(24), pages 1-21, December.
    7. Wang, Qin & Yao, Wei & Fang, Jiakun & Ai, Xiaomeng & Wen, Jinyu & Yang, Xiaobo & Xie, Hailian & Huang, Xing, 2020. "Dynamic modeling and small signal stability analysis of distributed photovoltaic grid-connected system with large scale of panel level DC optimizers," Applied Energy, Elsevier, vol. 259(C).
    8. Álvaro Fernández & Joana Rosell-Mirmi & Desideri Regany & Montse Vilarrubí & Jérôme Barrau & Manel Ibañez & Joan Rosell-Urrutia, 2024. "Impact of DC-DC Converters on the Energy Performance of a Dense Concentrator PV Array under Nonuniform Irradiance and Temperature Profiles," Energies, MDPI, vol. 17(5), pages 1-19, March.
    9. Ke Guo & Qiang Liu & Xinze Xi & Mingxuan Mao & Yihao Wan & Hao Wu, 2020. "Coordinated Control Strategy of a Combined Converter in a Photovoltaic DC Boost Collection System under Partial Shading Conditions," Energies, MDPI, vol. 13(2), pages 1-18, January.
    10. Saud Alotaibi & Ahmed Darwish, 2021. "Modular Multilevel Converters for Large-Scale Grid-Connected Photovoltaic Systems: A Review," Energies, MDPI, vol. 14(19), pages 1-30, September.
    11. Turrini, Sebastiano & Bettonte, Marco & Eccher, Massimo & Grigiante, Maurizio & Miotello, Antonio & Brusa, Roberto S., 2018. "An innovative small-scale prototype plant integrating a solar dish concentrator with a molten salt storage system," Renewable Energy, Elsevier, vol. 123(C), pages 150-161.
    12. Francesco Castellani & Abdelgalil Eltayesh & Francesco Natili & Tommaso Tocci & Matteo Becchetti & Lorenzo Capponi & Davide Astolfi & Gianluca Rossi, 2021. "Wind Flow Characterisation over a PV Module through URANS Simulations and Wind Tunnel Optical Flow Methods," Energies, MDPI, vol. 14(20), pages 1-21, October.
    13. Miran Rodič & Miro Milanovič & Mitja Truntič & Benjamin Ošlaj, 2018. "Switched-Capacitor Boost Converter for Low Power Energy Harvesting Applications," Energies, MDPI, vol. 11(11), pages 1-29, November.
    14. Shin-Ki Hong & Sung Gu Lee & Myungchin Kim, 2020. "Assessment and Mitigation of Electric Vehicle Charging Demand Impact to Transformer Aging for an Apartment Complex," Energies, MDPI, vol. 13(10), pages 1-23, May.
    15. Dawid Buła & Dariusz Grabowski & Andrzej Lange & Marcin Maciążek & Marian Pasko, 2020. "Long- and Short-Term Comparative Analysis of Renewable Energy Sources," Energies, MDPI, vol. 13(14), pages 1-18, July.
    16. Matej Bereš & Dobroslav Kováč & Tibor Vince & Irena Kováčová & Ján Molnár & Iveta Tomčíková & Jozef Dziak & Patrik Jacko & Branislav Fecko & Šimon Gans, 2021. "Efficiency Enhancement of Non-Isolated DC-DC Interleaved Buck Converter for Renewable Energy Sources," Energies, MDPI, vol. 14(14), pages 1-15, July.
    17. Saravanan, S. & Ramesh Babu, N., 2017. "Analysis and implementation of high step-up DC-DC converter for PV based grid application," Applied Energy, Elsevier, vol. 190(C), pages 64-72.
    18. Khaled Obaideen & Abdul Ghani Olabi & Yaser Al Swailmeen & Nabila Shehata & Mohammad Ali Abdelkareem & Abdul Hai Alami & Cristina Rodriguez & Enas Taha Sayed, 2023. "Solar Energy: Applications, Trends Analysis, Bibliometric Analysis and Research Contribution to Sustainable Development Goals (SDGs)," Sustainability, MDPI, vol. 15(2), pages 1-34, January.
    19. Gregorio Fernández & Noemi Galan & Daniel Marquina & Diego Martínez & Alberto Sanchez & Pablo López & Hans Bludszuweit & Jorge Rueda, 2020. "Photovoltaic Generation Impact Analysis in Low Voltage Distribution Grids," Energies, MDPI, vol. 13(17), pages 1-27, August.
    20. Petrakis Thomas & Aphrodite Ktena & Panagiotis Kosmopoulos & John Konstantaras & Michael Vrachopoulos, 2023. "Impact of Non-Uniform Irradiance and Temperature Distribution on the Performance of Photovoltaic Generators," Energies, MDPI, vol. 16(17), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2312-:d:354589. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.