IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2123-d1076691.html
   My bibliography  Save this article

The Design of a Large-Scale Induction Heating Power Source for Organic Waste Digesters to Produce Fertilizer

Author

Listed:
  • Thanaset Thosdeekoraphat

    (School of Electronic Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand)

  • Kittisak Tanthai

    (School of Electronic Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand)

  • Kachaporn Lhathum

    (School of Electronic Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand)

  • Supawat Kotchapradit

    (School of Electronic Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand)

  • Samran Santalunai

    (School of Electronic Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand)

  • Chanchai Thongsopa

    (School of Electronic Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand)

Abstract

Heating induction is a new environmentally friendly, energy-saving technology that offers a more effective performance than other common heaters. The energy-use efficiency of an inductor circuit is greater than 80 percent, while a biomass tank and tungsten coil have 70 percent and 51.8 percent efficiency, respectively. This method also produces more heat than any other forms of heating using gas or coal. The induction heating method has attracted significant interest and has seen application worldwide. Based on this important source of heating, we have designed and developed a large induction-heating machine with high energy to heat up a tank directly. The aim is to degrade organic waste as much as possible and convert it into an effective fertilizer by adding mesophilic microorganisms; the fertilizer transforming process takes no more than 24 h. The tank featured in our design has a 100-cm radius and is 155 in length; this is very large. The aim of this process is to reduce the amount of organic waste and thereby provide environmental benefits. To this end, we have designed a large, high-energy induction-heating machine (approximately 9.6 kilowatt) and used two machines in order to appropriately heat the tank for a large amount of organic-waste degradation. This research can be effectively applied to many heating methods in industry.

Suggested Citation

  • Thanaset Thosdeekoraphat & Kittisak Tanthai & Kachaporn Lhathum & Supawat Kotchapradit & Samran Santalunai & Chanchai Thongsopa, 2023. "The Design of a Large-Scale Induction Heating Power Source for Organic Waste Digesters to Produce Fertilizer," Energies, MDPI, vol. 16(5), pages 1-20, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2123-:d:1076691
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2123/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2123/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Banyat Leelachariyakul & Peerawut Yutthagowith, 2022. "Accurate Circuit Parameter Determination of a Resonant Power Frequency Converter for High-Voltage and Partial Discharge Tests," Energies, MDPI, vol. 15(15), pages 1-19, July.
    2. Kwang-Hyung Cha & Chang-Tae Ju & Rae-Young Kim, 2020. "Analysis and Evaluation of WBG Power Device in High Frequency Induction Heating Application," Energies, MDPI, vol. 13(20), pages 1-15, October.
    3. Chiew, Yoon Lin & Spångberg, Johanna & Baky, Andras & Hansson, Per-Anders & Jönsson, Håkan, 2015. "Environmental impact of recycling digested food waste as a fertilizer in agriculture—A case study," Resources, Conservation & Recycling, Elsevier, vol. 95(C), pages 1-14.
    4. Qiliang Ye & Jiang Zeng & Yuan Li & Peiqing Yuan & Fuchen Wang, 2022. "Heat Integration for Phenols and Ammonia Recovery Process of Coal Gasification Wastewater Considering Optimization of Process Parameters," Energies, MDPI, vol. 15(23), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raphael Gergely & Christoph Hochenauer, 2023. "Heating Strategies for Efficient Combined Inductive and Convective Heating of Profiles," Energies, MDPI, vol. 16(16), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jerzy Barglik & Adrian Smagór & Albert Smalcerz & Debela Geneti Desisa, 2021. "Induction Heating of Gear Wheels in Consecutive Contour Hardening Process," Energies, MDPI, vol. 14(13), pages 1-14, June.
    2. Marcin Witczak & Marcin Mrugalski & Bogdan Lipiec, 2021. "Remaining Useful Life Prediction of MOSFETs via the Takagi–Sugeno Framework," Energies, MDPI, vol. 14(8), pages 1-23, April.
    3. Marzena Smol & Paulina Marcinek & Zuzana Šimková & Tomáš Bakalár & Milan Hemzal & Jiří Jaromír Klemeš & Yee Van Fan & Kinga Lorencz & Eugeniusz Koda & Anna Podlasek, 2022. "Inventory of Good Practices of Sustainable and Circular Phosphorus Management in the Visegrad Group (V4)," Resources, MDPI, vol. 12(1), pages 1-17, December.
    4. Bahare Salehi & Lijun Wang, 2022. "Critical Review on Nanomaterials for Enhancing Bioconversion and Bioremediation of Agricultural Wastes and Wastewater," Energies, MDPI, vol. 15(15), pages 1-21, July.
    5. Yanming Xu & Carl Ngai Man Ho & Avishek Ghosh & Dharshana Muthumuni, 2021. "Generalized Behavioral Modelling Methodology of Switch-Diode Cell for Power Loss Prediction in Electromagnetic Transient Simulation," Energies, MDPI, vol. 14(5), pages 1-23, March.
    6. Sang-Mo Kang & Arjun Adhikari & Dibya Bhatta & Ho-Jun Gam & Min-Ji Gim & Joon-Ik Son & Jin Y. Shin & In-Jung Lee, 2022. "Comparison of Effects of Chemical and Food Waste-Derived Fertilizers on the Growth and Nutrient Content of Lettuce ( Lactuca sativa L.)," Resources, MDPI, vol. 11(2), pages 1-12, February.
    7. Amit Kumar & Milad Moradpour & Michele Losito & Wulf-Toke Franke & Suganthi Ramasamy & Roberto Baccoli & Gianluca Gatto, 2022. "Wide Band Gap Devices and Their Application in Power Electronics," Energies, MDPI, vol. 15(23), pages 1-26, December.
    8. Sezer Aslan & Metin Ozturk & Nihan Altintas, 2023. "A Comparative Evaluation of Wide-Bandgap Semiconductors for High-Performance Domestic Induction Heating," Energies, MDPI, vol. 16(10), pages 1-16, May.
    9. Edemar O. Prado & Pedro C. Bolsi & Hamiltom C. Sartori & José R. Pinheiro, 2022. "An Overview about Si, Superjunction, SiC and GaN Power MOSFET Technologies in Power Electronics Applications," Energies, MDPI, vol. 15(14), pages 1-17, July.
    10. Pradeep Vishnuram & Gunabalan Ramachandiran & Thanikanti Sudhakar Babu & Benedetto Nastasi, 2021. "Induction Heating in Domestic Cooking and Industrial Melting Applications: A Systematic Review on Modelling, Converter Topologies and Control Schemes," Energies, MDPI, vol. 14(20), pages 1-34, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2123-:d:1076691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.