IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5351-d427814.html
   My bibliography  Save this article

Analysis and Evaluation of WBG Power Device in High Frequency Induction Heating Application

Author

Listed:
  • Kwang-Hyung Cha

    (The Department of Electrical and Biomedical Engineering, Hanyang University, Seoul 04763, Korea)

  • Chang-Tae Ju

    (The Department of Electrical and Biomedical Engineering, Hanyang University, Seoul 04763, Korea)

  • Rae-Young Kim

    (The Department of Electrical and Biomedical Engineering, Hanyang University, Seoul 04763, Korea)

Abstract

A device suitability analysis is performed herein by comparing the performance of a silicon carbide (SiC) metal-oxide-semiconductor-field-effect transistor (MOSFET) and a gallium nitride (GaN) high-electron mobility transistor (HEMT), which are wide-bandgap (WBG) power semiconductor devices in induction heating (IH) systems. The WBG device presents advantages such as high-speed switching owing to its excellent physical properties, and when it is applied to the IH system, a high output power can be achieved through high-frequency driving. To exploit these advantages effectively, a suitability analysis comparing SiC and GaN with IH systems is required. In this study, SiC MOSFET and GaN HEMT are applied to the general half-bridge series resonant converter topology, and comparisons of the conduction loss, switching loss, reverse conduction loss, and thermal performance considering the characteristics of the device and the system conditions are performed. Accordingly, the device suitability in an IH system is analyzed. To verify the device conformance analysis, a resonant converter prototype with SiC and GaN rated at 650 V is constructed. The analysis is verified by an experimental comparison of power loss and thermal performance.

Suggested Citation

  • Kwang-Hyung Cha & Chang-Tae Ju & Rae-Young Kim, 2020. "Analysis and Evaluation of WBG Power Device in High Frequency Induction Heating Application," Energies, MDPI, vol. 13(20), pages 1-15, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5351-:d:427814
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5351/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5351/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jerzy Barglik & Adrian Smagór & Albert Smalcerz & Debela Geneti Desisa, 2021. "Induction Heating of Gear Wheels in Consecutive Contour Hardening Process," Energies, MDPI, vol. 14(13), pages 1-14, June.
    2. Yanming Xu & Carl Ngai Man Ho & Avishek Ghosh & Dharshana Muthumuni, 2021. "Generalized Behavioral Modelling Methodology of Switch-Diode Cell for Power Loss Prediction in Electromagnetic Transient Simulation," Energies, MDPI, vol. 14(5), pages 1-23, March.
    3. Edemar O. Prado & Pedro C. Bolsi & Hamiltom C. Sartori & José R. Pinheiro, 2022. "An Overview about Si, Superjunction, SiC and GaN Power MOSFET Technologies in Power Electronics Applications," Energies, MDPI, vol. 15(14), pages 1-17, July.
    4. Thanaset Thosdeekoraphat & Kittisak Tanthai & Kachaporn Lhathum & Supawat Kotchapradit & Samran Santalunai & Chanchai Thongsopa, 2023. "The Design of a Large-Scale Induction Heating Power Source for Organic Waste Digesters to Produce Fertilizer," Energies, MDPI, vol. 16(5), pages 1-20, February.
    5. Amit Kumar & Milad Moradpour & Michele Losito & Wulf-Toke Franke & Suganthi Ramasamy & Roberto Baccoli & Gianluca Gatto, 2022. "Wide Band Gap Devices and Their Application in Power Electronics," Energies, MDPI, vol. 15(23), pages 1-26, December.
    6. Pradeep Vishnuram & Gunabalan Ramachandiran & Thanikanti Sudhakar Babu & Benedetto Nastasi, 2021. "Induction Heating in Domestic Cooking and Industrial Melting Applications: A Systematic Review on Modelling, Converter Topologies and Control Schemes," Energies, MDPI, vol. 14(20), pages 1-34, October.
    7. Marcin Witczak & Marcin Mrugalski & Bogdan Lipiec, 2021. "Remaining Useful Life Prediction of MOSFETs via the Takagi–Sugeno Framework," Energies, MDPI, vol. 14(8), pages 1-23, April.
    8. Sezer Aslan & Metin Ozturk & Nihan Altintas, 2023. "A Comparative Evaluation of Wide-Bandgap Semiconductors for High-Performance Domestic Induction Heating," Energies, MDPI, vol. 16(10), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5351-:d:427814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.