IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i22p7468-d1275463.html
   My bibliography  Save this article

Design and Optimization of Heat Sinks for the Liquid Cooling of Electronics with Multiple Heat Sources: A Literature Review

Author

Listed:
  • Yijun Li

    (Nantes Université, CNRS, Laboratoire de Thermique et Energie de Nantes, LTeN, UMR 6607, F-44000 Nantes, France)

  • Stéphane Roux

    (Nantes Université, CNRS, Laboratoire de Thermique et Energie de Nantes, LTeN, UMR 6607, F-44000 Nantes, France)

  • Cathy Castelain

    (Nantes Université, CNRS, Laboratoire de Thermique et Energie de Nantes, LTeN, UMR 6607, F-44000 Nantes, France)

  • Yilin Fan

    (Nantes Université, CNRS, Laboratoire de Thermique et Energie de Nantes, LTeN, UMR 6607, F-44000 Nantes, France)

  • Lingai Luo

    (Nantes Université, CNRS, Laboratoire de Thermique et Energie de Nantes, LTeN, UMR 6607, F-44000 Nantes, France)

Abstract

This paper presents a detailed literature review on the thermal management issue faced by electronic devices, particularly concerning uneven heating and overheating problems. Special focus is given to the design and structural optimization of heat sinks for efficient single-phase liquid cooling. Firstly, the paper highlights the common presence and detrimental consequences of electronics overheating resulting from multiple heat sources, supported by various illustrative examples. Subsequently, the emphasis is placed on single-phase liquid cooling as one of the effective thermal management technologies for power electronics, as well as on the enhancement of heat transfer in micro/mini channel heat sinks. Various studies on the design and structural optimization of heat sinks are then analyzed and categorized into five main areas: (1) optimization of channel cross-section shape, (2) optimization of channel flow passage, (3) flow distribution optimization for parallel straight channel heat sinks, (4) optimization of pin-fin shape and arrangement, and (5) topology optimization of global flow configuration. After presenting a broad and complete overview of the state of the art, the paper concludes with a critical analysis of the methods and results from the literature and highlights the research perspectives and challenges in the field. It is shown that the issue of uneven and overheating caused by multiple heat sources, which is commonly observed in modern electronics, has received less attention in the literature compared to uniform or single-peak heating. While several design and structural optimization techniques have been implemented to enhance the cooling performance of heat sinks, topology optimization has experienced significant advancements in recent years and appears to be the most promising technology due to its highest degree of freedom to treat the uneven heating problem. This paper can serve as an essential reference contributing to the development of liquid-cooling heat sinks for efficient thermal management of electronics.

Suggested Citation

  • Yijun Li & Stéphane Roux & Cathy Castelain & Yilin Fan & Lingai Luo, 2023. "Design and Optimization of Heat Sinks for the Liquid Cooling of Electronics with Multiple Heat Sources: A Literature Review," Energies, MDPI, vol. 16(22), pages 1-26, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7468-:d:1275463
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/22/7468/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/22/7468/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Han, Feng & Guo, Hong & Ding, Xiaofeng, 2021. "Design and optimization of a liquid cooled heat sink for a motor inverter in electric vehicles," Applied Energy, Elsevier, vol. 291(C).
    2. Chen, Kai & Wu, Weixiong & Yuan, Fang & Chen, Lin & Wang, Shuangfeng, 2019. "Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern," Energy, Elsevier, vol. 167(C), pages 781-790.
    3. He, Ziqiang & Yan, Yunfei & Zhang, Zhien, 2021. "Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review," Energy, Elsevier, vol. 216(C).
    4. Basu, Suman & Hariharan, Krishnan S. & Kolake, Subramanya Mayya & Song, Taewon & Sohn, Dong Kee & Yeo, Taejung, 2016. "Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system," Applied Energy, Elsevier, vol. 181(C), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Chunxia & Sun, Yalong & Tang, Heng & Zhang, Shiwei & Yuan, Wei & Zhu, Likuan & Tang, Yong, 2024. "A review on the liquid cooling thermal management system of lithium-ion batteries," Applied Energy, Elsevier, vol. 375(C).
    2. Gharehghani, Ayat & Rabiei, Moeed & Mehranfar, Sadegh & Saeedipour, Soheil & Mahmoudzadeh Andwari, Amin & García, Antonio & Reche, Carlos Mico, 2024. "Progress in battery thermal management systems technologies for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    3. Qaderi, Alireza & Veysi, Farzad, 2022. "Investigation of a water-NEPCM cooling thermal management system for cylindrical 18650 Li-ion batteries," Energy, Elsevier, vol. 244(PA).
    4. Li, Jing & Zuo, Wei & E, Jiaqiang & Zhang, Yuntian & Li, Qingqing & Sun, Ke & Zhou, Kun & Zhang, Guangde, 2022. "Multi-objective optimization of mini U-channel cold plate with SiO2 nanofluid by RSM and NSGA-II," Energy, Elsevier, vol. 242(C).
    5. Guo, Chao & Liu, Huan-ling & Guo, Qi & Shao, Xiao-dong & Zhu, Ming-liang, 2022. "Investigations on a novel cold plate achieved by topology optimization for lithium-ion batteries," Energy, Elsevier, vol. 261(PA).
    6. Yulong Li & Zhifu Zhou & Laisuo Su & Minli Bai & Linsong Gao & Yang Li & Xuanyu Liu & Yubai Li & Yongchen Song, 2022. "Numerical Simulations for Indirect and Direct Cooling of 54 V LiFePO 4 Battery Pack," Energies, MDPI, vol. 15(13), pages 1-30, June.
    7. Liang, Jialin & Gan, Yunhua & Li, Yong & Tan, Meixian & Wang, Jianqin, 2019. "Thermal and electrochemical performance of a serially connected battery module using a heat pipe-based thermal management system under different coolant temperatures," Energy, Elsevier, vol. 189(C).
    8. Zhang, Xinghui & Li, Zhao & Luo, Lingai & Fan, Yilin & Du, Zhengyu, 2022. "A review on thermal management of lithium-ion batteries for electric vehicles," Energy, Elsevier, vol. 238(PA).
    9. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    10. Kumar, Kartik & Sarkar, Jahar & Mondal, Swasti Sundar, 2024. "Analysis of ternary hybrid nanofluid in microchannel-cooled cylindrical Li-ion battery pack using multi-scale multi-domain framework," Applied Energy, Elsevier, vol. 355(C).
    11. Zhou, Zhizuan & Wang, Dong & Peng, Yang & Li, Maoyu & Wang, Boxuan & Cao, Bei & Yang, Lizhong, 2022. "Experimental study on the thermal management performance of phase change material module for the large format prismatic lithium-ion battery," Energy, Elsevier, vol. 238(PC).
    12. Bamdezh, M.A. & Molaeimanesh, G.R., 2024. "The effect of active and passive battery thermal management systems on energy consumption, battery degradation, and carbon emissions of an electric vehicle," Energy, Elsevier, vol. 304(C).
    13. Wang, Gongquan & Kong, Depeng & Ping, Ping & He, Xiaoqin & Lv, Hongpeng & Zhao, Hengle & Hong, Wanru, 2023. "Modeling venting behavior of lithium-ion batteries during thermal runaway propagation by coupling CFD and thermal resistance network," Applied Energy, Elsevier, vol. 334(C).
    14. Nguyen, T.D. & Deng, J. & Robert, B. & Chen, W. & Siegmund, T., 2022. "Experimental investigation on cooling of prismatic battery cells through cell integrated features," Energy, Elsevier, vol. 244(PA).
    15. Al-Zareer, Maan & Dincer, Ibrahim & Rosen, Marc A., 2019. "Comparative assessment of new liquid-to-vapor type battery cooling systems," Energy, Elsevier, vol. 188(C).
    16. Chen, Kai & Wu, Weixiong & Yuan, Fang & Chen, Lin & Wang, Shuangfeng, 2019. "Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern," Energy, Elsevier, vol. 167(C), pages 781-790.
    17. Murali, G. & Sravya, G.S.N. & Jaya, J. & Naga Vamsi, V., 2021. "A review on hybrid thermal management of battery packs and it's cooling performance by enhanced PCM," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    18. Rajib Mahamud & Chanwoo Park, 2022. "Theory and Practices of Li-Ion Battery Thermal Management for Electric and Hybrid Electric Vehicles," Energies, MDPI, vol. 15(11), pages 1-45, May.
    19. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    20. Anandh Ramesh Babu & Jelena Andric & Blago Minovski & Simone Sebben, 2021. "System-Level Modeling and Thermal Simulations of Large Battery Packs for Electric Trucks," Energies, MDPI, vol. 14(16), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7468-:d:1275463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.