IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3571-d814898.html
   My bibliography  Save this article

The Maritime Sector and Its Problematic Decarbonization: A Systematic Review of the Contribution of Alternative Fuels

Author

Listed:
  • Vinicius Andrade dos Santos

    (MIT-Portugal Programme, Energy for Sustainability Initiative (EFS), Department of Mechanical Engineering, University of Coimbra, 3030-194 Coimbra, Portugal
    Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), Chemical Engineering Department, University of Coimbra, 3030-790 Coimbra, Portugal)

  • Patrícia Pereira da Silva

    (MIT-Portugal Programme, Energy for Sustainability Initiative (EFS), Department of Mechanical Engineering, University of Coimbra, 3030-194 Coimbra, Portugal
    Centre for Business and Economic Research (CeBER), University of Coimbra, Av Dias da Silva, 165, 3004-512 Coimbra, Portugal
    Faculty of Economics, University of Coimbra, Av Dias da Silva, 165, 3004-512 Coimbra, Portugal
    The Institute for Systems Engineering and Computers at Coimbra INESC, University of Coimbra, Pólo II, 3030-290 Coimbra, Portugal)

  • Luís Manuel Ventura Serrano

    (School of Technology and Management, Polytechnic of Leiria, 2411-901 Leiria, Portugal
    Association for Development of Industrial Aerodynamics (ADAI), University of Coimbra, 3030-788 Coimbra, Portugal)

Abstract

The present study seeks to select the most important articles and reviews from the Web of Science database that approached alternative fuels towards the decarbonization of the maritime sector. Through a systematic review methodology, a combination of keywords and manual refining found a contribution of 103 works worldwide, the European continent accounting for 57% of all publications. Twenty-two types of fuels were cited by the authors, liquefied natural gas (LNG), hydrogen, and biodiesel contributing to 49% of the mentions. Greenhouse gases, sulfur oxide, nitrogen oxide, and particulate matter reductions are some of the main advantages of cleaner sources if used by the vessels. Nevertheless, there is a lack of practical research on new standards, engine performance, cost, and regulations from the academy to direct more stakeholders towards low carbon intensity in the shipping sector.

Suggested Citation

  • Vinicius Andrade dos Santos & Patrícia Pereira da Silva & Luís Manuel Ventura Serrano, 2022. "The Maritime Sector and Its Problematic Decarbonization: A Systematic Review of the Contribution of Alternative Fuels," Energies, MDPI, vol. 15(10), pages 1-30, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3571-:d:814898
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3571/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3571/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ronald A. Halim & Lucie Kirstein & Olaf Merk & Luis M. Martinez, 2018. "Decarbonization Pathways for International Maritime Transport: A Model-Based Policy Impact Assessment," Sustainability, MDPI, vol. 10(7), pages 1-30, June.
    2. Hannes Johnson & Mikael Johansson & Karin Andersson & Björn Södahl, 2013. "Will the ship energy efficiency management plan reduce CO 2 emissions? A comparison with ISO 50001 and the ISM code," Maritime Policy & Management, Taylor & Francis Journals, vol. 40(2), pages 177-190, March.
    3. Ančić, Ivica & Šestan, Ante, 2015. "Influence of the required EEDI reduction factor on the CO2 emission from bulk carriers," Energy Policy, Elsevier, vol. 84(C), pages 107-116.
    4. Cherng-Yuan Lin, 2013. "Effects of Biodiesel Blend on Marine Fuel Characteristics for Marine Vessels," Energies, MDPI, vol. 6(9), pages 1-11, September.
    5. Perčić, Maja & Vladimir, Nikola & Fan, Ailong, 2020. "Life-cycle cost assessment of alternative marine fuels to reduce the carbon footprint in short-sea shipping: A case study of Croatia," Applied Energy, Elsevier, vol. 279(C).
    6. Michael Maloni & Jomon Aliyas Paul & David M Gligor, 2013. "Slow steaming impacts on ocean carriers and shippers," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 15(2), pages 151-171, June.
    7. Müller-Casseres, Eduardo & Edelenbosch, Oreane Y. & Szklo, Alexandre & Schaeffer, Roberto & van Vuuren, Detlef P., 2021. "Global futures of trade impacting the challenge to decarbonize the international shipping sector," Energy, Elsevier, vol. 237(C).
    8. Perčić, Maja & Ančić, Ivica & Vladimir, Nikola, 2020. "Life-cycle cost assessments of different power system configurations to reduce the carbon footprint in the Croatian short-sea shipping sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    9. Julia Hansson & Selma Brynolf & Erik Fridell & Mariliis Lehtveer, 2020. "The Potential Role of Ammonia as Marine Fuel—Based on Energy Systems Modeling and Multi-Criteria Decision Analysis," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    10. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    11. Li Chin Law & Beatrice Foscoli & Epaminondas Mastorakos & Stephen Evans, 2021. "A Comparison of Alternative Fuels for Shipping in Terms of Lifecycle Energy and Cost," Energies, MDPI, vol. 14(24), pages 1-32, December.
    12. Balcombe, Paul & Staffell, Iain & Kerdan, Ivan Garcia & Speirs, Jamie F. & Brandon, Nigel P. & Hawkes, Adam D., 2021. "How can LNG-fuelled ships meet decarbonisation targets? An environmental and economic analysis," Energy, Elsevier, vol. 227(C).
    13. Elizabeth Lindstad & Agathe Rialland, 2020. "LNG and Cruise Ships, an Easy Way to Fulfil Regulations—Versus the Need for Reducing GHG Emissions," Sustainability, MDPI, vol. 12(5), pages 1-15, March.
    14. Andrea Maria Rizzo & David Chiaramonti, 2022. "Blending of Hydrothermal Liquefaction Biocrude with Residual Marine Fuel: An Experimental Assessment," Energies, MDPI, vol. 15(2), pages 1-16, January.
    15. Luís Cortez & Telma Teixeira Franco & Gustavo Valença & Frank Rosillo-Calle, 2021. "Perspective Use of Fast Pyrolysis Bio-Oil (FPBO) in Maritime Transport: The Case of Brazil," Energies, MDPI, vol. 14(16), pages 1-16, August.
    16. Müller-Casseres, Eduardo & Carvalho, Francielle & Nogueira, Tainan & Fonte, Clarissa & Império, Mariana & Poggio, Matheus & Wei, Huang Ken & Portugal-Pereira, Joana & Rochedo, Pedro R.R. & Szklo, Alex, 2021. "Production of alternative marine fuels in Brazil: An integrated assessment perspective," Energy, Elsevier, vol. 219(C).
    17. Siyuan Wang & Theo Notteboom, 2014. "The Adoption of Liquefied Natural Gas as a Ship Fuel: A Systematic Review of Perspectives and Challenges," Transport Reviews, Taylor & Francis Journals, vol. 34(6), pages 749-774, November.
    18. Hui Xing & Charles Stuart & Stephen Spence & Hua Chen, 2021. "Fuel Cell Power Systems for Maritime Applications: Progress and Perspectives," Sustainability, MDPI, vol. 13(3), pages 1-34, January.
    19. Choi, Wonjae & Song, Han Ho, 2018. "Well-to-wheel greenhouse gas emissions of battery electric vehicles in countries dependent on the import of fuels through maritime transportation: A South Korean case study," Applied Energy, Elsevier, vol. 230(C), pages 135-147.
    20. Elizabeth Lindstad & Gunnar S. Eskeland & Agathe Rialland & Anders Valland, 2020. "Decarbonizing Maritime Transport: The Importance of Engine Technology and Regulations for LNG to Serve as a Transition Fuel," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    21. Zahraee, Seyed Mojib & Rahimpour Golroudbary, Saeed & Shiwakoti, Nirajan & Stasinopoulos, Peter, 2021. "Particle-Gaseous pollutant emissions and cost of global biomass supply chain via maritime transportation: Full-scale synergy model," Applied Energy, Elsevier, vol. 303(C).
    22. Ortiz-Imedio, Rafael & Caglayan, Dilara Gulcin & Ortiz, Alfredo & Heinrichs, Heidi & Robinius, Martin & Stolten, Detlef & Ortiz, Inmaculada, 2021. "Power-to-Ships: Future electricity and hydrogen demands for shipping on the Atlantic coast of Europe in 2050," Energy, Elsevier, vol. 228(C).
    23. Francielle Carvalho & Joana Portugal-Pereira & Martin Junginger & Alexandre Szklo, 2021. "Biofuels for Maritime Transportation: A Spatial, Techno-Economic, and Logistic Analysis in Brazil, Europe, South Africa, and the USA," Energies, MDPI, vol. 14(16), pages 1-27, August.
    24. Patrizia Serra & Gianfranco Fancello, 2020. "Towards the IMO’s GHG Goals: A Critical Overview of the Perspectives and Challenges of the Main Options for Decarbonizing International Shipping," Sustainability, MDPI, vol. 12(8), pages 1-32, April.
    25. ben Brahim, Till & Wiese, Frauke & Münster, Marie, 2019. "Pathways to climate-neutral shipping: A Danish case study," Energy, Elsevier, vol. 188(C).
    26. James J. Winebrake & James J. Corbett & Fatima Umar & Daniel Yuska, 2019. "Pollution Tradeoffs for Conventional and Natural Gas-Based Marine Fuels," Sustainability, MDPI, vol. 11(8), pages 1-19, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bilgili, Levent, 2023. "A systematic review on the acceptance of alternative marine fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    2. Peixoto, Crisley S. & Vieira, Giovani G.T.T. & Salles, Mauricio B.C. & Carmo, Bruno S., 2024. "Assessing the impact of power dispatch optimization and energy storage systems in Diesel–electric PSVs: A case study based on real field data," Applied Energy, Elsevier, vol. 357(C).
    3. Sogut, M. Ziya, 2023. "A comparative analysis of a dry bulk carrier's fuel preference in terms of entropy and environmental sustainability," Energy, Elsevier, vol. 275(C).
    4. Yi-Hui Liao & Hsuan-Shih Lee, 2023. "Using a Directional Distance Function to Measure the Environmental Efficiency of International Liner Shipping Companies and Assess Regulatory Impact," Sustainability, MDPI, vol. 15(4), pages 1-13, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bilgili, Levent, 2023. "A systematic review on the acceptance of alternative marine fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    2. Perčić, Maja & Vladimir, Nikola & Jovanović, Ivana & Koričan, Marija, 2022. "Application of fuel cells with zero-carbon fuels in short-sea shipping," Applied Energy, Elsevier, vol. 309(C).
    3. Monica Grosso & Fabio Luis Marques dos Santos & Konstantinos Gkoumas & Marcin Stępniak & Ferenc Pekár, 2021. "The Role of Research and Innovation in Europe for the Decarbonisation of Waterborne Transport," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    4. Perčić, Maja & Frković, Lovro & Pukšec, Tomislav & Ćosić, Boris & Li, Oi Lun & Vladimir, Nikola, 2022. "Life-cycle assessment and life-cycle cost assessment of power batteries for all-electric vessels for short-sea navigation," Energy, Elsevier, vol. 251(C).
    5. Mohamad Issa & Adrian Ilinca & Fahed Martini, 2022. "Ship Energy Efficiency and Maritime Sector Initiatives to Reduce Carbon Emissions," Energies, MDPI, vol. 15(21), pages 1-37, October.
    6. Desantes, J.M. & Novella, R. & Pla, B. & Lopez-Juarez, M., 2021. "Impact of fuel cell range extender powertrain design on greenhouse gases and NOX emissions in automotive applications," Applied Energy, Elsevier, vol. 302(C).
    7. Nepomuceno de Oliveira, Maurício Aguilar & Szklo, Alexandre & Castelo Branco, David Alves, 2022. "Implementation of Maritime Transport Mitigation Measures according to their marginal abatement costs and their mitigation potentials," Energy Policy, Elsevier, vol. 160(C).
    8. Alam Md Moshiul & Roslina Mohammad & Fariha Anjum Hira, 2023. "Alternative Fuel Selection Framework toward Decarbonizing Maritime Deep-Sea Shipping," Sustainability, MDPI, vol. 15(6), pages 1-37, March.
    9. Perčić, Maja & Vladimir, Nikola & Fan, Ailong, 2021. "Techno-economic assessment of alternative marine fuels for inland shipping in Croatia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    10. Magdalena Klopott & Marzenna Popek & Ilona Urbanyi-Popiołek, 2023. "Seaports’ Role in Ensuring the Availability of Alternative Marine Fuels—A Multi-Faceted Analysis," Energies, MDPI, vol. 16(7), pages 1-30, March.
    11. Trivyza, Nikoletta L. & Rentizelas, Athanasios & Theotokatos, Gerasimos & Boulougouris, Evangelos, 2022. "Decision support methods for sustainable ship energy systems: A state-of-the-art review," Energy, Elsevier, vol. 239(PC).
    12. Korberg, A.D. & Brynolf, S. & Grahn, M. & Skov, I.R., 2021. "Techno-economic assessment of advanced fuels and propulsion systems in future fossil-free ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    13. Sandro Vidas & Marijan Cukrov & Valentina Šutalo & Smiljko Rudan, 2021. "CO 2 Emissions Reduction Measures for RO-RO Vessels on Non-Profitable Coastal Liner Passenger Transport," Sustainability, MDPI, vol. 13(12), pages 1-15, June.
    14. Karin Andersson & Selma Brynolf & Julia Hansson & Maria Grahn, 2020. "Criteria and Decision Support for A Sustainable Choice of Alternative Marine Fuels," Sustainability, MDPI, vol. 12(9), pages 1-23, April.
    15. Lixian Fan & Bingmei Gu, 2019. "Impacts of the Increasingly Strict Sulfur Limit on Compliance Option Choices: The Case Study of Chinese SECA," Sustainability, MDPI, vol. 12(1), pages 1-20, December.
    16. Orestis Schinas & Niklas Bergmann, 2021. "The Short-Term Cost of Greening the Global Fleet," Sustainability, MDPI, vol. 13(16), pages 1-32, August.
    17. Iva Ridjan Skov & Noémi Schneider & Gerald Schweiger & Josef-Peter Schöggl & Alfred Posch, 2021. "Power-to-X in Denmark: An Analysis of Strengths, Weaknesses, Opportunities and Threats," Energies, MDPI, vol. 14(4), pages 1-14, February.
    18. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2024. "A solar-assisted liquefied biomethane production by anaerobic digestion: Dynamic simulations for harbors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    19. Suneet Singh & Ashish Dwivedi & Saurabh Pratap, 2023. "Sustainable Maritime Freight Transportation: Current Status and Future Directions," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
    20. Maja Perčić & Nikola Vladimir & Marija Koričan, 2021. "Electrification of Inland Waterway Ships Considering Power System Lifetime Emissions and Costs," Energies, MDPI, vol. 14(21), pages 1-25, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3571-:d:814898. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.