IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p941-d735954.html
   My bibliography  Save this article

System Simulation and Analysis of an LNG-Fueled SOFC System Using Additively Manufactured High Temperature Heat Exchangers

Author

Listed:
  • Jan Hollmann

    (Institute of Thermodynamics, Leibniz University Hannover, 30167 Hannover, Germany)

  • Marco Fuchs

    (Institute of Thermodynamics, Leibniz University Hannover, 30167 Hannover, Germany)

  • Carsten Spieker

    (Zentrum für BrennstoffzellenTechnik GmbH, 47057 Duisburg, Germany)

  • Ulrich Gardemann

    (Zentrum für BrennstoffzellenTechnik GmbH, 47057 Duisburg, Germany)

  • Michael Steffen

    (Zentrum für BrennstoffzellenTechnik GmbH, 47057 Duisburg, Germany)

  • Xing Luo

    (Institute of Thermodynamics, Leibniz University Hannover, 30167 Hannover, Germany)

  • Stephan Kabelac

    (Institute of Thermodynamics, Leibniz University Hannover, 30167 Hannover, Germany)

Abstract

A laboratory-scale solid oxide fuel cell (SOFC) system using liquefied natural gas (LNG) as a fuel is designed to be used as an energy converter on seagoing vessels (MultiSchIBZ project). The presented system design phase is supported by thermodynamic system simulation. As heat integration plays a crucial role with regard to fuel recirculation and endothermic pre-reforming, the heat exchanger and pre-reforming component models need to exhibit a high degree of accuracy throughout the entire operating range. Compact additively manufactured tube-bundle and plate-fin heat exchangers are designed to achieve high heat exchange efficiencies at low pressure losses. Their heat transfer correlations are derived from experimental component tests under operating conditions. A simulation study utilizing these heat exchanger characteristics is carried out for four configuration variants of pre-reforming and heat integration. Their system behaviour is analyzed with regard to the degree of pre-reforming and the outlet temperature of the fuel processing module. The combination of allothermal pre-reforming with additively manufactured plate-fin heat exchangers exhibits the best heat integration performance at nominal full load and yields a partial load capability to up to 60% electrical load at net electrical efficiencies of 58 to 60% (LHV).

Suggested Citation

  • Jan Hollmann & Marco Fuchs & Carsten Spieker & Ulrich Gardemann & Michael Steffen & Xing Luo & Stephan Kabelac, 2022. "System Simulation and Analysis of an LNG-Fueled SOFC System Using Additively Manufactured High Temperature Heat Exchangers," Energies, MDPI, vol. 15(3), pages 1-29, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:941-:d:735954
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/941/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/941/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Hui Xing & Charles Stuart & Stephen Spence & Hua Chen, 2021. "Fuel Cell Power Systems for Maritime Applications: Progress and Perspectives," Sustainability, MDPI, vol. 13(3), pages 1-34, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kistner, Lukas & Bensmann, Astrid & Hanke-Rauschenbach, Richard, 2022. "Optimal Design of a Distributed Ship Power System with Solid Oxide Fuel Cells under the Consideration of Component Malfunctions," Applied Energy, Elsevier, vol. 316(C).
    2. García-Castillo, Jorge L. & Picón-Núñez, Martín & Abu-Khader, Mazen M., 2022. "Improving the prediction of the thermohydraulic performance of secondary surfaces and its application in heat recovery processes," Energy, Elsevier, vol. 261(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vinicius Andrade dos Santos & Patrícia Pereira da Silva & Luís Manuel Ventura Serrano, 2022. "The Maritime Sector and Its Problematic Decarbonization: A Systematic Review of the Contribution of Alternative Fuels," Energies, MDPI, vol. 15(10), pages 1-30, May.
    2. Perčić, Maja & Vladimir, Nikola & Jovanović, Ivana & Koričan, Marija, 2022. "Application of fuel cells with zero-carbon fuels in short-sea shipping," Applied Energy, Elsevier, vol. 309(C).
    3. Xu, Lijie & Hu, Hui & Ji, Jie & Cai, Jingyong & Dai, Leyang, 2024. "Hybrid energy saving performance of translucent CdTe photovoltaic window on small ship under sailing condition," Energy, Elsevier, vol. 295(C).
    4. Henry Schwartz & Tomi Solakivi & Magnus Gustafsson, 2022. "Is There Business Potential for Sustainable Shipping? Price Premiums Needed to Cover Decarbonized Transportation," Sustainability, MDPI, vol. 14(10), pages 1-20, May.
    5. Xiangang Lan & Xiaode Zuo & Qin Tao, 2023. "Container Shipping Optimization under Different Carbon Emission Policies: A Case Study," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    6. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2024. "A solar-assisted liquefied biomethane production by anaerobic digestion: Dynamic simulations for harbors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    7. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2023. "Renewable smart energy network: A thermoeconomic comparison between conventional lithium-ion batteries and reversible solid oxide fuel cells," Renewable Energy, Elsevier, vol. 214(C), pages 74-95.
    8. Long Lyu & Wu Chen & Ankang Kan & Yuan Zhang & Song Xue & Jingbin Zeng, 2022. "Investigation of a Dual-Loop ORC for the Waste Heat Recovery of a Marine Main Engine," Energies, MDPI, vol. 15(22), pages 1-22, November.
    9. Hao Jin & Xinhang Yang, 2023. "Bilevel Optimal Sizing and Operation Method of Fuel Cell/Battery Hybrid All-Electric Shipboard Microgrid," Mathematics, MDPI, vol. 11(12), pages 1-16, June.
    10. Michail Cheliotis & Evangelos Boulougouris & Nikoletta L Trivyza & Gerasimos Theotokatos & George Livanos & George Mantalos & Athanasios Stubos & Emmanuel Stamatakis & Alexandros Venetsanos, 2021. "Review on the Safe Use of Ammonia Fuel Cells in the Maritime Industry," Energies, MDPI, vol. 14(11), pages 1-20, May.
    11. Ahmad Baroutaji & Arun Arjunan & John Robinson & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Abdul Ghani Olabi, 2021. "PEMFC Poly-Generation Systems: Developments, Merits, and Challenges," Sustainability, MDPI, vol. 13(21), pages 1-31, October.
    12. Ahmed, Shoaib & Li, Tie & Yi, Ping & Chen, Run, 2023. "Environmental impact assessment of green ammonia-powered very large tanker ship for decarbonized future shipping operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    13. Tian, Zhen & Zhou, Yihang & Zhang, Yuan & Gao, Wenzhong, 2024. "Design principle, 4E analyses and optimization for onboard CCS system under EEDI framework: A case study of an LNG-fueled bulk carrier," Energy, Elsevier, vol. 295(C).
    14. Perčić, Maja & Vladimir, Nikola & Fan, Ailong, 2021. "Techno-economic assessment of alternative marine fuels for inland shipping in Croatia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    15. Wang, Zhuang & Chen, Li & Wang, Bin & Huang, Lianzhong & Wang, Kai & Ma, Ranqi, 2023. "Integrated optimization of speed schedule and energy management for a hybrid electric cruise ship considering environmental factors," Energy, Elsevier, vol. 282(C).
    16. Tomas Gil-Lopez & Amparo Verdu-Vazquez, 2021. "Environmental Analysis of the Use of Liquefied Natural Gas in Maritime Transport within the Port Environment," Sustainability, MDPI, vol. 13(21), pages 1-14, October.
    17. Monica Grosso & Fabio Luis Marques dos Santos & Konstantinos Gkoumas & Marcin Stępniak & Ferenc Pekár, 2021. "The Role of Research and Innovation in Europe for the Decarbonisation of Waterborne Transport," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    18. Baccioli, Andrea & Liponi, Angelica & Milewski, Jarosław & Szczęśniak, Arkadiusz & Desideri, Umberto, 2021. "Hybridization of an internal combustion engine with a molten carbonate fuel cell for marine applications," Applied Energy, Elsevier, vol. 298(C).
    19. Wang, Kai & Xue, Yu & Xu, Hao & Huang, Lianzhong & Ma, Ranqi & Zhang, Peng & Jiang, Xiaoli & Yuan, Yupeng & Negenborn, Rudy R. & Sun, Peiting, 2022. "Joint energy consumption optimization method for wing-diesel engine-powered hybrid ships towards a more energy-efficient shipping," Energy, Elsevier, vol. 245(C).
    20. Jiang, Meizhi & Wang, Benmei & Hao, Yingjun & Chen, Shijun & Wen, Yuanqiao & Yang, Zaili, 2024. "Quantification of CO2 emissions in transportation: An empirical analysis by modal shift from road to waterway transport in Zhejiang, China," Transport Policy, Elsevier, vol. 145(C), pages 177-186.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:941-:d:735954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.