IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i3p655-d488580.html
   My bibliography  Save this article

Dynamic Prioritization of Functions during Real-Time Multi-Use Operation of Battery Energy Storage Systems

Author

Listed:
  • Jürgen Marchgraber

    (TU Wien, Institute of Energy Systems and Electrical Drives, 1040 Vienna, Austria)

  • Wolfgang Gawlik

    (TU Wien, Institute of Energy Systems and Electrical Drives, 1040 Vienna, Austria)

Abstract

Battery Energy Storage Systems (BESS) based on Li-Ion technology are considered to be one of the providers of services in the future power system. Although prices for Li-Ion batteries are falling continuously, it is still difficult to achieve profitability from a single service today. Multi-use operation of BESS in order to reach a so-called “value-stacking” of services therefore is a hotly debated topic in literature, since such an operation holds the potential to increase profitability dramatically. The multi-use operation of a BESS can be divided into two parts: the operational planning phase and the real-time operation. While the operational planning phase has been examined in many studies, there seems to be a lack of discussion for the real-time operation. This paper therefore tries to address the topic of the real-time operation in more detail. For this reason, this paper discusses concepts for implementing a real-time multi-use operation and introduces the novel concept of dynamic prioritization, which allows resolving conflicts of services. Besides the ability to cope with abnormal grid conditions, this concept also holds potential for a better utilization of resources during normal grid conditions. A mathematical framework is used to describe several services and their interaction, taking into account the concept of dynamic prioritization. Several applications are presented in order to demonstrate the behavior of the concept during normal and abnormal grid conditions. These applications are simulated in Matlab/Simulink for specific events and in the form of long-time simulations.

Suggested Citation

  • Jürgen Marchgraber & Wolfgang Gawlik, 2021. "Dynamic Prioritization of Functions during Real-Time Multi-Use Operation of Battery Energy Storage Systems," Energies, MDPI, vol. 14(3), pages 1-36, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:655-:d:488580
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/3/655/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/3/655/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jürgen Marchgraber & Wolfgang Gawlik, 2020. "Investigation of Black-Starting and Islanding Capabilities of a Battery Energy Storage System Supplying a Microgrid Consisting of Wind Turbines, Impedance- and Motor-Loads," Energies, MDPI, vol. 13(19), pages 1-24, October.
    2. Jürgen Marchgraber & Christian Alács & Yi Guo & Wolfgang Gawlik & Adolfo Anta & Alexander Stimmer & Martin Lenz & Manuel Froschauer & Michaela Leonhardt, 2020. "Comparison of Control Strategies to Realize Synthetic Inertia in Converters," Energies, MDPI, vol. 13(13), pages 1-21, July.
    3. A. Stephan & B. Battke & M. D. Beuse & J. H. Clausdeinken & T. S. Schmidt, 2016. "Limiting the public cost of stationary battery deployment by combining applications," Nature Energy, Nature, vol. 1(7), pages 1-9, July.
    4. Jürgen Marchgraber & Wolfgang Gawlik, 2020. "Dynamic Voltage Support of Converters during Grid Faults in Accordance with National Grid Code Requirements," Energies, MDPI, vol. 13(10), pages 1-20, May.
    5. Schimpe, Michael & Naumann, Maik & Truong, Nam & Hesse, Holger C. & Santhanagopalan, Shriram & Saxon, Aron & Jossen, Andreas, 2018. "Energy efficiency evaluation of a stationary lithium-ion battery container storage system via electro-thermal modeling and detailed component analysis," Applied Energy, Elsevier, vol. 210(C), pages 211-229.
    6. Holger C. Hesse & Michael Schimpe & Daniel Kucevic & Andreas Jossen, 2017. "Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids," Energies, MDPI, vol. 10(12), pages 1-42, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schwidtal, Jan Marc & Agostini, Marco & Coppo, Massimiliano & Bignucolo, Fabio & Lorenzoni, Arturo, 2023. "Optimized operation of distributed energy resources: The opportunities of value stacking for Power-to-Gas aggregated with PV," Applied Energy, Elsevier, vol. 334(C).
    2. Ekaterina Abramova & Derek Bunn, 2021. "Optimal Daily Trading of Battery Operations Using Arbitrage Spreads," Energies, MDPI, vol. 14(16), pages 1-23, August.
    3. Hanif, Sarmad & Alam, M.J.E. & Roshan, Kini & Bhatti, Bilal A. & Bedoya, Juan C., 2022. "Multi-service battery energy storage system optimization and control," Applied Energy, Elsevier, vol. 311(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Englberger, Stefan & Abo Gamra, Kareem & Tepe, Benedikt & Schreiber, Michael & Jossen, Andreas & Hesse, Holger, 2021. "Electric vehicle multi-use: Optimizing multiple value streams using mobile storage systems in a vehicle-to-grid context," Applied Energy, Elsevier, vol. 304(C).
    2. Holger C. Hesse & Volkan Kumtepeli & Michael Schimpe & Jorn Reniers & David A. Howey & Anshuman Tripathi & Youyi Wang & Andreas Jossen, 2019. "Ageing and Efficiency Aware Battery Dispatch for Arbitrage Markets Using Mixed Integer Linear Programming †," Energies, MDPI, vol. 12(6), pages 1-28, March.
    3. Parlikar, Anupam & Truong, Cong Nam & Jossen, Andreas & Hesse, Holger, 2021. "The carbon footprint of island grids with lithium-ion battery systems: An analysis based on levelized emissions of energy supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    4. Parlikar, Anupam & Schott, Maximilian & Godse, Ketaki & Kucevic, Daniel & Jossen, Andreas & Hesse, Holger, 2023. "High-power electric vehicle charging: Low-carbon grid integration pathways with stationary lithium-ion battery systems and renewable generation," Applied Energy, Elsevier, vol. 333(C).
    5. Jürgen Marchgraber & Wolfgang Gawlik, 2020. "Investigation of Black-Starting and Islanding Capabilities of a Battery Energy Storage System Supplying a Microgrid Consisting of Wind Turbines, Impedance- and Motor-Loads," Energies, MDPI, vol. 13(19), pages 1-24, October.
    6. Bernhard Faessler & Aleksander Bogunović Jakobsen, 2021. "Autonomous Operation of Stationary Battery Energy Storage Systems—Optimal Storage Design and Economic Potential," Energies, MDPI, vol. 14(5), pages 1-12, March.
    7. Gupta, Ruchi & Pena-Bello, Alejandro & Streicher, Kai Nino & Roduner, Cattia & Farhat, Yamshid & Thöni, David & Patel, Martin Kumar & Parra, David, 2021. "Spatial analysis of distribution grid capacity and costs to enable massive deployment of PV, electric mobility and electric heating," Applied Energy, Elsevier, vol. 287(C).
    8. Bernhard Faessler, 2021. "Stationary, Second Use Battery Energy Storage Systems and Their Applications: A Research Review," Energies, MDPI, vol. 14(8), pages 1-19, April.
    9. Stefan Englberger & Holger Hesse & Daniel Kucevic & Andreas Jossen, 2019. "A Techno-Economic Analysis of Vehicle-to-Building: Battery Degradation and Efficiency Analysis in the Context of Coordinated Electric Vehicle Charging," Energies, MDPI, vol. 12(5), pages 1-17, March.
    10. Walmsley, Timothy Gordon & Philipp, Matthias & Picón-Núñez, Martín & Meschede, Henning & Taylor, Matthew Thomas & Schlosser, Florian & Atkins, Martin John, 2023. "Hybrid renewable energy utility systems for industrial sites: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    11. Vykhodtsev, Anton V. & Jang, Darren & Wang, Qianpu & Rosehart, William & Zareipour, Hamidreza, 2022. "A review of modelling approaches to characterize lithium-ion battery energy storage systems in techno-economic analyses of power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    12. Rodrigo Martins & Holger C. Hesse & Johanna Jungbauer & Thomas Vorbuchner & Petr Musilek, 2018. "Optimal Component Sizing for Peak Shaving in Battery Energy Storage System for Industrial Applications," Energies, MDPI, vol. 11(8), pages 1-22, August.
    13. Michael Schimpe & Christian Piesch & Holger C. Hesse & Julian Paß & Stefan Ritter & Andreas Jossen, 2018. "Power Flow Distribution Strategy for Improved Power Electronics Energy Efficiency in Battery Storage Systems: Development and Implementation in a Utility-Scale System," Energies, MDPI, vol. 11(3), pages 1-17, March.
    14. Iolanda Saviuc & Herbert Peremans & Steven Van Passel & Kevin Milis, 2019. "Economic Performance of Using Batteries in European Residential Microgrids under the Net-Metering Scheme," Energies, MDPI, vol. 12(1), pages 1-28, January.
    15. Luna, M. & Di Piazza, M.C. & La Tona, G. & Accetta, A. & Pucci, M., 2021. "Exploiting dynamic modeling, parameter identification, and power electronics to implement a non-dissipative Li-ion battery hardware emulator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 183(C), pages 48-65.
    16. Ziad Ragab & Ehsan Pashajavid & Sumedha Rajakaruna, 2024. "Optimal Sizing and Economic Analysis of Community Battery Systems Considering Sensitivity and Uncertainty Factors," Energies, MDPI, vol. 17(18), pages 1-20, September.
    17. Daniel Fett & Dogan Keles & Thomas Kaschub & Wolf Fichtner, 2019. "Impacts of self-generation and self-consumption on German household electricity prices," Journal of Business Economics, Springer, vol. 89(7), pages 867-891, September.
    18. Ghorbanzadeh, Milad & Astaneh, Majid & Golzar, Farzin, 2019. "Long-term degradation based analysis for lithium-ion batteries in off-grid wind-battery renewable energy systems," Energy, Elsevier, vol. 166(C), pages 1194-1206.
    19. Li, Shuangqi & Zhao, Pengfei & Gu, Chenghong & Huo, Da & Zeng, Xianwu & Pei, Xiaoze & Cheng, Shuang & Li, Jianwei, 2022. "Online battery-protective vehicle to grid behavior management," Energy, Elsevier, vol. 243(C).
    20. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:655-:d:488580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.