IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2484-d358279.html
   My bibliography  Save this article

Dynamic Voltage Support of Converters during Grid Faults in Accordance with National Grid Code Requirements

Author

Listed:
  • Jürgen Marchgraber

    (Institute of Energy Systems and Electrical Drives, TU Wien, 1040 Vienna, Austria)

  • Wolfgang Gawlik

    (Institute of Energy Systems and Electrical Drives, TU Wien, 1040 Vienna, Austria)

Abstract

To ensure system stability, national grid codes often require converter-based generators to provide fault-ride-through (FRT) capabilities and dynamic voltage support, according to which they should stay connected and support the voltage during fault situations. The requirements for dynamic voltage support include the injection of reactive current in the positive- as well as negative-sequence system, directly proportional to the change of the corresponding voltage between fault and pre-fault. Since this requirement may lead to a reference current surpassing the maximum current capability, the converter control has to contain a proper current limitation. This paper presents an algorithm for such a current limitation and a simulation model of a converter and its control, which applies this algorithm. Based on voltage measurements, which were measured during forced short-circuits in the real grid, the simulation model is used to simulate the behavior of a converter in reaction to these voltage measurements. The results show that the converter control using this algorithm for current limitation guarantees a current output below the maximum current capability while respecting the requirements for dynamic voltage support of the relevant grid codes.

Suggested Citation

  • Jürgen Marchgraber & Wolfgang Gawlik, 2020. "Dynamic Voltage Support of Converters during Grid Faults in Accordance with National Grid Code Requirements," Energies, MDPI, vol. 13(10), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2484-:d:358279
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2484/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2484/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jürgen Marchgraber & Wolfgang Gawlik, 2021. "Dynamic Prioritization of Functions during Real-Time Multi-Use Operation of Battery Energy Storage Systems," Energies, MDPI, vol. 14(3), pages 1-36, January.
    2. Jürgen Marchgraber & Wolfgang Gawlik, 2020. "Investigation of Black-Starting and Islanding Capabilities of a Battery Energy Storage System Supplying a Microgrid Consisting of Wind Turbines, Impedance- and Motor-Loads," Energies, MDPI, vol. 13(19), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2484-:d:358279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.