IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i19p5170-d423817.html
   My bibliography  Save this article

Investigation of Black-Starting and Islanding Capabilities of a Battery Energy Storage System Supplying a Microgrid Consisting of Wind Turbines, Impedance- and Motor-Loads

Author

Listed:
  • Jürgen Marchgraber

    (Institute of Energy Systems and Electrical Drives, TU Wien, 1040 Vienna, Austria)

  • Wolfgang Gawlik

    (Institute of Energy Systems and Electrical Drives, TU Wien, 1040 Vienna, Austria)

Abstract

Microgrids are small scale electrical power systems that comprise distributed energy resources (DER), loads, and storage devices. The integration of DER into the electrical power system basically allows the clustering of small parts of the main grid into Microgrids. Due to the increasing amount of renewable energy, which is integrated into the main grid, high power fluctuations are expected to become common in the next years. This carries the risk of blackouts to be also more likely in the future. Microgrids hold the potential of increasing reliability of supply, since they are capable of providing a backup supply during a blackout of the main grid. This paper investigates the black-starting and islanding capabilities of a battery energy storage system (BESS) in order to provide a possible backup supply for a small part of the main grid. Based on field tests in a real Microgrid, the backup supply of a residential medium voltage grid is tested. Whereas local wind turbines within this grid section are integrated into this Microgrid during the field test, the supply of households is reproduced by artificial loads consisting of impedance- and motor loads, since a supply of real households carries a high risk of safety issues and open questions regarding legal responsibility. To operate other DER during the island operation of such a Microgrid, control mechanisms have to ensure the power capabilities and energy reserves of the BESS to be respected. Since the operation during a backup supply of such a Microgrid requires a simple implementation, this paper presents a simple master–slave control approach, which influences the power output of other DER based on frequency characteristics without the need for further communication. Besides the operation of other DER, the capability to handle load changes during island operation while ensuring acceptable power quality is crucial for such a Microgrid. With the help of artificial loads, significant load changes of the residential grid section are reproduced and their influence on power quality is investigated during the field tests. Besides these load changes, the implementation and behavior of the master–slave control approach presented in this paper is tested. To prepare these field tests, simulations in M a t l a b /S i m u l i n k are performed to select appropriate sizes for the artificial loads and to estimate the expected behavior during the field tests. The field tests prove that a backup supply of a grid section during a blackout of the main grid by a BESS is possible. By creating the possibility of operating other DER during this backup supply, based on the master–slave control approach presented in this paper, the maximum duration for this backup supply can be increased.

Suggested Citation

  • Jürgen Marchgraber & Wolfgang Gawlik, 2020. "Investigation of Black-Starting and Islanding Capabilities of a Battery Energy Storage System Supplying a Microgrid Consisting of Wind Turbines, Impedance- and Motor-Loads," Energies, MDPI, vol. 13(19), pages 1-24, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5170-:d:423817
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/19/5170/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/19/5170/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jürgen Marchgraber & Christian Alács & Yi Guo & Wolfgang Gawlik & Adolfo Anta & Alexander Stimmer & Martin Lenz & Manuel Froschauer & Michaela Leonhardt, 2020. "Comparison of Control Strategies to Realize Synthetic Inertia in Converters," Energies, MDPI, vol. 13(13), pages 1-21, July.
    2. Zhao, Bo & Zhang, Xuesong & Li, Peng & Wang, Ke & Xue, Meidong & Wang, Caisheng, 2014. "Optimal sizing, operating strategy and operational experience of a stand-alone microgrid on Dongfushan Island," Applied Energy, Elsevier, vol. 113(C), pages 1656-1666.
    3. Jürgen Marchgraber & Wolfgang Gawlik, 2020. "Dynamic Voltage Support of Converters during Grid Faults in Accordance with National Grid Code Requirements," Energies, MDPI, vol. 13(10), pages 1-20, May.
    4. Arun Mambazhasseri Divakaran & Dean Hamilton & Krishna Nama Manjunatha & Manickam Minakshi, 2020. "Design, Development and Thermal Analysis of Reusable Li-Ion Battery Module for Future Mobile and Stationary Applications," Energies, MDPI, vol. 13(6), pages 1-22, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jürgen Marchgraber & Wolfgang Gawlik, 2021. "Dynamic Prioritization of Functions during Real-Time Multi-Use Operation of Battery Energy Storage Systems," Energies, MDPI, vol. 14(3), pages 1-36, January.
    2. Maria Carmela Di Piazza, 2021. "Energy Management Systems for Optimal Operation of Electrical Micro/Nanogrids," Energies, MDPI, vol. 14(24), pages 1-3, December.
    3. Christian Hachmann & Holger Becker & Martin Braun, 2022. "Cold Load Pickup Model Adequacy for Power System Restoration Studies," Energies, MDPI, vol. 15(20), pages 1-18, October.
    4. Guodong Liu & Thomas B. Ollis & Maximiliano F. Ferrari & Aditya Sundararajan & Kevin Tomsovic, 2022. "Robust Scheduling of Networked Microgrids for Economics and Resilience Improvement," Energies, MDPI, vol. 15(6), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jürgen Marchgraber & Wolfgang Gawlik, 2021. "Dynamic Prioritization of Functions during Real-Time Multi-Use Operation of Battery Energy Storage Systems," Energies, MDPI, vol. 14(3), pages 1-36, January.
    2. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    3. Vincenzo Franzitta & Domenico Curto & Davide Rao, 2016. "Energetic Sustainability Using Renewable Energies in the Mediterranean Sea," Sustainability, MDPI, vol. 8(11), pages 1-16, November.
    4. Zhao, Bo & Chen, Jian & Zhang, Leiqi & Zhang, Xuesong & Qin, Ruwen & Lin, Xiangning, 2018. "Three representative island microgrids in the East China Sea: Key technologies and experiences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 262-274.
    5. Feras Alasali & Mohammad Salameh & Ali Semrin & Khaled Nusair & Naser El-Naily & William Holderbaum, 2022. "Optimal Controllers and Configurations of 100% PV and Energy Storage Systems for a Microgrid: The Case Study of a Small Town in Jordan," Sustainability, MDPI, vol. 14(13), pages 1-20, July.
    6. Hai Lu & Jiaquan Yang & Kari Alanne, 2018. "Energy Quality Management for a Micro Energy Network Integrated with Renewables in a Tourist Area: A Chinese Case Study," Energies, MDPI, vol. 11(4), pages 1-24, April.
    7. Lan, Hai & Wen, Shuli & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun, 2015. "Optimal sizing of hybrid PV/diesel/battery in ship power system," Applied Energy, Elsevier, vol. 158(C), pages 26-34.
    8. Sun, Wei & Harrison, Gareth P., 2019. "Wind-solar complementarity and effective use of distribution network capacity," Applied Energy, Elsevier, vol. 247(C), pages 89-101.
    9. Mohamed Ali Zdiri & Tawfik Guesmi & Badr M. Alshammari & Khalid Alqunun & Abdulaziz Almalaq & Fatma Ben Salem & Hsan Hadj Abdallah & Ahmed Toumi, 2022. "Design and Analysis of Sliding-Mode Artificial Neural Network Control Strategy for Hybrid PV-Battery-Supercapacitor System," Energies, MDPI, vol. 15(11), pages 1-20, June.
    10. Nguyen, Hai Tra & Safder, Usman & Nhu Nguyen, X.Q. & Yoo, ChangKyoo, 2020. "Multi-objective decision-making and optimal sizing of a hybrid renewable energy system to meet the dynamic energy demands of a wastewater treatment plant," Energy, Elsevier, vol. 191(C).
    11. Thiaux, Yaël & Dang, Thu Thuy & Schmerber, Louis & Multon, Bernard & Ben Ahmed, Hamid & Bacha, Seddik & Tran, Quoc Tuan, 2019. "Demand-side management strategy in stand-alone hybrid photovoltaic systems with real-time simulation of stochastic electricity consumption behavior," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    12. F. Isorna Llerena & E. López González & J. J. Caparrós Mancera & F. Segura Manzano & J. M. Andújar, 2021. "Hydrogen vs. Battery-Based Propulsion Systems in Unipersonal Vehicles—Developing Solutions to Improve the Sustainability of Urban Mobility," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    13. Laws, Nicholas D. & Anderson, Kate & DiOrio, Nicholas A. & Li, Xiangkun & McLaren, Joyce, 2018. "Impacts of valuing resilience on cost-optimal PV and storage systems for commercial buildings," Renewable Energy, Elsevier, vol. 127(C), pages 896-909.
    14. Wen, Shuli & Lan, Hai & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun & Cheng, Peng, 2016. "Allocation of ESS by interval optimization method considering impact of ship swinging on hybrid PV/diesel ship power system," Applied Energy, Elsevier, vol. 175(C), pages 158-167.
    15. Prince Waqas Khan & Yung-Cheol Byun, 2021. "Blockchain-Based Peer-to-Peer Energy Trading and Charging Payment System for Electric Vehicles," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    16. Zhao, Bo & Xue, Meidong & Zhang, Xuesong & Wang, Caisheng & Zhao, Junhui, 2015. "An MAS based energy management system for a stand-alone microgrid at high altitude," Applied Energy, Elsevier, vol. 143(C), pages 251-261.
    17. Gioutsos, Dean Marcus & Blok, Kornelis & van Velzen, Leonore & Moorman, Sjoerd, 2018. "Cost-optimal electricity systems with increasing renewable energy penetration for islands across the globe," Applied Energy, Elsevier, vol. 226(C), pages 437-449.
    18. Thomas, Dimitrios & Deblecker, Olivier & Ioakimidis, Christos S., 2016. "Optimal design and techno-economic analysis of an autonomous small isolated microgrid aiming at high RES penetration," Energy, Elsevier, vol. 116(P1), pages 364-379.
    19. Qi Wang & Tian Gao & Xingcan Li, 2022. "SOC Estimation of Lithium-Ion Battery Based on Equivalent Circuit Model with Variable Parameters," Energies, MDPI, vol. 15(16), pages 1-15, August.
    20. Navid Shirzadi & Fuzhan Nasiri & Ursula Eicker, 2020. "Optimal Configuration and Sizing of an Integrated Renewable Energy System for Isolated and Grid-Connected Microgrids: The Case of an Urban University Campus," Energies, MDPI, vol. 13(14), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5170-:d:423817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.