IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v271y2020ics0306261920307303.html
   My bibliography  Save this article

Profitability of commercial and industrial photovoltaics and battery projects in South-East-Asia

Author

Listed:
  • Beuse, Martin
  • Dirksmeier, Mathias
  • Steffen, Bjarne
  • Schmidt, Tobias S.

Abstract

Solar photovoltaics and batteries are key technologies to enable a rapid decarbonization of electricity systems. Commercial & industrial consumers are an important market for these technologies due to their fast growing electricity demand, particularly in emerging economies. However, it remains unclear if photovoltaics and battery installations are profitable for commercial & industrial applications in an emerging country context. Assessing the profitability of investments in photovoltaics and battery projects, however, is much more complex than for standalone photovoltaics projects, and strongly depends on the regulatory regime. These regimes are often complex and can be inconsistent. Hitherto decision makers lack models which are suitable for detailed assessments and which can serve as basis to adjust the regime. Here, we develop a techno-economic optimization model for commercial & industrial photovoltaics and battery projects, which returns a profit-maximizing storage dispatch and system design. We investigate three South-East Asian countries (Vietnam, Thailand, and Malaysia) and three different industries (Textile, Consumer Goods, and Electronics). The results show that profitable investment opportunities in photovoltaics and battery projects exist already today, even though a battery typically reduces profitability vis-à-vis standalone photovoltaics projects. We discuss how reducing investment risks, building local industries, and shifting existing support schemes towards batteries could support battery deployment in South-East Asia and thereby contribute to the decarbonization of electricity systems in the region.

Suggested Citation

  • Beuse, Martin & Dirksmeier, Mathias & Steffen, Bjarne & Schmidt, Tobias S., 2020. "Profitability of commercial and industrial photovoltaics and battery projects in South-East-Asia," Applied Energy, Elsevier, vol. 271(C).
  • Handle: RePEc:eee:appene:v:271:y:2020:i:c:s0306261920307303
    DOI: 10.1016/j.apenergy.2020.115218
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920307303
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115218?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steffen, Bjarne & Weber, Christoph, 2016. "Optimal operation of pumped-hydro storage plants with continuous time-varying power prices," European Journal of Operational Research, Elsevier, vol. 252(1), pages 308-321.
    2. Martin Beuse, 2018. "Death by a thousand charges," Nature Energy, Nature, vol. 3(5), pages 363-364, May.
    3. Williams, Eric & Carvalho, Rexon & Hittinger, Eric & Ronnenberg, Matthew, 2020. "Empirical development of parsimonious model for international diffusion of residential solar," Renewable Energy, Elsevier, vol. 150(C), pages 570-577.
    4. Bazilian, Morgan & Onyeji, Ijeoma & Liebreich, Michael & MacGill, Ian & Chase, Jennifer & Shah, Jigar & Gielen, Dolf & Arent, Doug & Landfear, Doug & Zhengrong, Shi, 2013. "Re-considering the economics of photovoltaic power," Renewable Energy, Elsevier, vol. 53(C), pages 329-338.
    5. Merei, Ghada & Moshövel, Janina & Magnor, Dirk & Sauer, Dirk Uwe, 2016. "Optimization of self-consumption and techno-economic analysis of PV-battery systems in commercial applications," Applied Energy, Elsevier, vol. 168(C), pages 171-178.
    6. Steffen, Bjarne & Matsuo, Tyeler & Steinemann, Davita & Schmidt, Tobias S., 2018. "Opening new markets for clean energy: The role of project developers in the global diffusion of renewable energy technologies," Business and Politics, Cambridge University Press, vol. 20(4), pages 553-587, December.
    7. Lang, Tillmann & Ammann, David & Girod, Bastien, 2016. "Profitability in absence of subsidies: A techno-economic analysis of rooftop photovoltaic self-consumption in residential and commercial buildings," Renewable Energy, Elsevier, vol. 87(P1), pages 77-87.
    8. Braeuer, Fritz & Rominger, Julian & McKenna, Russell & Fichtner, Wolf, 2019. "Battery storage systems: An economic model-based analysis of parallel revenue streams and general implications for industry," Applied Energy, Elsevier, vol. 239(C), pages 1424-1440.
    9. Babacan, Oytun & Ratnam, Elizabeth L. & Disfani, Vahid R. & Kleissl, Jan, 2017. "Distributed energy storage system scheduling considering tariff structure, energy arbitrage and solar PV penetration," Applied Energy, Elsevier, vol. 205(C), pages 1384-1393.
    10. O. Schmidt & A. Hawkes & A. Gambhir & I. Staffell, 2017. "The future cost of electrical energy storage based on experience rates," Nature Energy, Nature, vol. 2(8), pages 1-8, August.
    11. Chaianong, Aksornchan & Bangviwat, Athikom & Menke, Christoph & Breitschopf, Barbara & Eichhammer, Wolfgang, 2020. "Customer economics of residential PV–battery systems in Thailand," Renewable Energy, Elsevier, vol. 146(C), pages 297-308.
    12. Guannan He & Qixin Chen & Panayiotis Moutis & Soummya Kar & Jay F. Whitacre, 2018. "An intertemporal decision framework for electrochemical energy storage management," Nature Energy, Nature, vol. 3(5), pages 404-412, May.
    13. Johan Lilliestam & Marc Melliger & Lana Ollier & Tobias S. Schmidt & Bjarne Steffen, 2020. "Understanding and accounting for the effect of exchange rate fluctuations on global learning rates," Nature Energy, Nature, vol. 5(1), pages 71-78, January.
    14. A. Stephan & B. Battke & M. D. Beuse & J. H. Clausdeinken & T. S. Schmidt, 2016. "Limiting the public cost of stationary battery deployment by combining applications," Nature Energy, Nature, vol. 1(7), pages 1-9, July.
    15. Mitscher, Martin & Rüther, Ricardo, 2012. "Economic performance and policies for grid-connected residential solar photovoltaic systems in Brazil," Energy Policy, Elsevier, vol. 49(C), pages 688-694.
    16. Pena-Bello, A. & Barbour, E. & Gonzalez, M.C. & Patel, M.K. & Parra, D., 2019. "Optimized PV-coupled battery systems for combining applications: Impact of battery technology and geography," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 978-990.
    17. Lang, Tillmann & Gloerfeld, Erik & Girod, Bastien, 2015. "Don׳t just follow the sun – A global assessment of economic performance for residential building photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 932-951.
    18. Sani Hassan, Abubakar & Cipcigan, Liana & Jenkins, Nick, 2017. "Optimal battery storage operation for PV systems with tariff incentives," Applied Energy, Elsevier, vol. 203(C), pages 422-441.
    19. Tongsopit, Sopitsuda & Junlakarn, Siripha & Wibulpolprasert, Wichsinee & Chaianong, Aksornchan & Kokchang, Phimsupha & Hoang, Nghia Vu, 2019. "The economics of solar PV self-consumption in Thailand," Renewable Energy, Elsevier, vol. 138(C), pages 395-408.
    20. Holger C. Hesse & Rodrigo Martins & Petr Musilek & Maik Naumann & Cong Nam Truong & Andreas Jossen, 2017. "Economic Optimization of Component Sizing for Residential Battery Storage Systems," Energies, MDPI, vol. 10(7), pages 1-19, June.
    21. Hartmann, Bálint & Divényi, Dániel & Vokony, István, 2018. "Evaluation of business possibilities of energy storage at commercial and industrial consumers – A case study," Applied Energy, Elsevier, vol. 222(C), pages 59-66.
    22. Malhotra, Abhishek & Battke, Benedikt & Beuse, Martin & Stephan, Annegret & Schmidt, Tobias, 2016. "Use cases for stationary battery technologies: A review of the literature and existing projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 705-721.
    23. Khalilpour, Rajab & Vassallo, Anthony, 2016. "Planning and operation scheduling of PV-battery systems: A novel methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 194-208.
    24. Tobias S. Schmidt, 2014. "Low-carbon investment risks and de-risking," Nature Climate Change, Nature, vol. 4(4), pages 237-239, April.
    25. Karakaya, Emrah & Sriwannawit, Pranpreya, 2015. "Barriers to the adoption of photovoltaic systems: The state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 60-66.
    26. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    27. Ossenbrink, Jan, 2017. "How feed-in remuneration design shapes residential PV prosumer paradigms," Energy Policy, Elsevier, vol. 108(C), pages 239-255.
    28. Beck, T. & Kondziella, H. & Huard, G. & Bruckner, T., 2016. "Assessing the influence of the temporal resolution of electrical load and PV generation profiles on self-consumption and sizing of PV-battery systems," Applied Energy, Elsevier, vol. 173(C), pages 331-342.
    29. Felix Creutzig & Peter Agoston & Jan Christoph Goldschmidt & Gunnar Luderer & Gregory Nemet & Robert C. Pietzcker, 2017. "The underestimated potential of solar energy to mitigate climate change," Nature Energy, Nature, vol. 2(9), pages 1-9, September.
    30. Mariaud, Arthur & Acha, Salvador & Ekins-Daukes, Ned & Shah, Nilay & Markides, Christos N., 2017. "Integrated optimisation of photovoltaic and battery storage systems for UK commercial buildings," Applied Energy, Elsevier, vol. 199(C), pages 466-478.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Ying & Wang, Xinru & Li, Shunyi & Ma, Xiaoyang & Chen, Yunzhu & Liu, Shuming, 2024. "Optimization model for harmonic mitigation based on PV-ESS collaboration in small distribution systems," Applied Energy, Elsevier, vol. 356(C).
    2. Anesu Maronga & Kumbuso Joshua Nyoni & Paul Gerard Tuohy & Agabu Shane, 2021. "Evaluation of PV and CSP Systems to Supply Power in the Zimbabwe Mining Sector," Energies, MDPI, vol. 14(13), pages 1-38, June.
    3. Ke Shi & Chuangyi Li & Choongwan Koo, 2021. "A Techno-Economic Feasibility Analysis of Mono-Si and Poly-Si Photovoltaic Systems in the Rooftop Area of Commercial Building under the Feed-In Tariff Scheme," Sustainability, MDPI, vol. 13(9), pages 1-22, April.
    4. Raphael Souza de Oliveira & Meire Jane Lima de Oliveira & Erick Giovani Sperandio Nascimento & Renelson Sampaio & Aloísio Santos Nascimento Filho & Hugo Saba, 2023. "Renewable Energy Generation Technologies for Decarbonizing Urban Vertical Buildings: A Path towards Net Zero," Sustainability, MDPI, vol. 15(17), pages 1-19, August.
    5. Yoo, Yeojin & Ha, Yoonhee, 2024. "Market attractiveness analysis of battery energy storage systems in Indonesia, Malaysia, the Philippines, Thailand, and Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreolli, Francesca & D’Alpaos, Chiara & Moretto, Michele, 2022. "Valuing investments in domestic PV-Battery Systems under uncertainty," Energy Economics, Elsevier, vol. 106(C).
    2. Rodrigo Martins & Holger C. Hesse & Johanna Jungbauer & Thomas Vorbuchner & Petr Musilek, 2018. "Optimal Component Sizing for Peak Shaving in Battery Energy Storage System for Industrial Applications," Energies, MDPI, vol. 11(8), pages 1-22, August.
    3. Pena-Bello, A. & Barbour, E. & Gonzalez, M.C. & Patel, M.K. & Parra, D., 2019. "Optimized PV-coupled battery systems for combining applications: Impact of battery technology and geography," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 978-990.
    4. Holger C. Hesse & Michael Schimpe & Daniel Kucevic & Andreas Jossen, 2017. "Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids," Energies, MDPI, vol. 10(12), pages 1-42, December.
    5. Günther, Claudia & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Prosumage of solar electricity: Tariff design, capacity investments, and power sector effects," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 152.
    6. Kalkbrenner, Bernhard J., 2019. "Residential vs. community battery storage systems – Consumer preferences in Germany," Energy Policy, Elsevier, vol. 129(C), pages 1355-1363.
    7. Alejandro Pena-Bello & Edward Barbour & Marta C. Gonzalez & Selin Yilmaz & Martin K. Patel & David Parra, 2020. "How Does the Electricity Demand Profile Impact the Attractiveness of PV-Coupled Battery Systems Combining Applications?," Energies, MDPI, vol. 13(15), pages 1-19, August.
    8. Parra, David & Mauger, Romain, 2022. "A new dawn for energy storage: An interdisciplinary legal and techno-economic analysis of the new EU legal framework," Energy Policy, Elsevier, vol. 171(C).
    9. Han, Xuejiao & Garrison, Jared & Hug, Gabriela, 2022. "Techno-economic analysis of PV-battery systems in Switzerland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    10. Javier L'opez Prol & Wolf-Peter Schill, 2020. "The Economics of Variable Renewables and Electricity Storage," Papers 2012.15371, arXiv.org.
    11. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Liu, Xuezhi & Yan, Zheng & Wu, Jianzhong, 2019. "Optimal coordinated operation of a multi-energy community considering interactions between energy storage and conversion devices," Applied Energy, Elsevier, vol. 248(C), pages 256-273.
    13. Khezri, Rahmat & Mahmoudi, Amin & Aki, Hirohisa, 2022. "Optimal planning of solar photovoltaic and battery storage systems for grid-connected residential sector: Review, challenges and new perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    14. Schram, Wouter L. & Lampropoulos, Ioannis & van Sark, Wilfried G.J.H.M., 2018. "Photovoltaic systems coupled with batteries that are optimally sized for household self-consumption: Assessment of peak shaving potential," Applied Energy, Elsevier, vol. 223(C), pages 69-81.
    15. Hartmann, Bálint & Divényi, Dániel & Vokony, István, 2018. "Evaluation of business possibilities of energy storage at commercial and industrial consumers – A case study," Applied Energy, Elsevier, vol. 222(C), pages 59-66.
    16. Ahsan, Syed M. & Khan, Hassan A. & Hassan, Naveed-ul & Arif, Syed M. & Lie, Tek-Tjing, 2020. "Optimized power dispatch for solar photovoltaic-storage system with multiple buildings in bilateral contracts," Applied Energy, Elsevier, vol. 273(C).
    17. Schopfer, S. & Tiefenbeck, V. & Staake, T., 2018. "Economic assessment of photovoltaic battery systems based on household load profiles," Applied Energy, Elsevier, vol. 223(C), pages 229-248.
    18. Gallego-Castillo, Cristobal & Heleno, Miguel & Victoria, Marta, 2021. "Self-consumption for energy communities in Spain: A regional analysis under the new legal framework," Energy Policy, Elsevier, vol. 150(C).
    19. Espinoza, R. & Muñoz-Cerón, E. & Aguilera, J. & de la Casa, J., 2019. "Feasibility evaluation of residential photovoltaic self-consumption projects in Peru," Renewable Energy, Elsevier, vol. 136(C), pages 414-427.
    20. Claudia Gunther & Wolf-Peter Schill & Alexander Zerrahn, 2019. "Prosumage of solar electricity: tariff design, capacity investments, and power system effects," Papers 1907.09855, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:271:y:2020:i:c:s0306261920307303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.