Enhanced Short-Term Load Forecasting Using Artificial Neural Networks
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Dimitrios Kontogiannis & Dimitrios Bargiotas & Aspassia Daskalopulu, 2021. "Fuzzy Control System for Smart Energy Management in Residential Buildings Based on Environmental Data," Energies, MDPI, vol. 14(3), pages 1-18, February.
- Seunghyoung Ryu & Jaekoo Noh & Hongseok Kim, 2016. "Deep Neural Network Based Demand Side Short Term Load Forecasting," Energies, MDPI, vol. 10(1), pages 1-20, December.
- Dimitrios Kontogiannis & Dimitrios Bargiotas & Aspassia Daskalopulu, 2020. "Minutely Active Power Forecasting Models Using Neural Networks," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
- Raza, Muhammad Qamar & Khosravi, Abbas, 2015. "A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1352-1372.
- Nima Amjady & Farshid Keynia, 2011. "A New Neural Network Approach to Short Term Load Forecasting of Electrical Power Systems," Energies, MDPI, vol. 4(3), pages 1-16, March.
- Liu, Nian & Tang, Qingfeng & Zhang, Jianhua & Fan, Wei & Liu, Jie, 2014. "A hybrid forecasting model with parameter optimization for short-term load forecasting of micro-grids," Applied Energy, Elsevier, vol. 129(C), pages 336-345.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ahmed Mazin Majid AL-Qaysi & Altug Bozkurt & Yavuz Ates, 2023. "Load Forecasting Based on Genetic Algorithm–Artificial Neural Network-Adaptive Neuro-Fuzzy Inference Systems: A Case Study in Iraq," Energies, MDPI, vol. 16(6), pages 1-20, March.
- Sivakavi Naga Venkata Bramareswara Rao & Venkata Pavan Kumar Yellapragada & Kottala Padma & Darsy John Pradeep & Challa Pradeep Reddy & Mohammad Amir & Shady S. Refaat, 2022. "Day-Ahead Load Demand Forecasting in Urban Community Cluster Microgrids Using Machine Learning Methods," Energies, MDPI, vol. 15(17), pages 1-25, August.
- Athanasios Ioannis Arvanitidis & Dimitrios Bargiotas & Aspassia Daskalopulu & Dimitrios Kontogiannis & Ioannis P. Panapakidis & Lefteri H. Tsoukalas, 2022. "Clustering Informed MLP Models for Fast and Accurate Short-Term Load Forecasting," Energies, MDPI, vol. 15(4), pages 1-14, February.
- Roman V. Klyuev & Irbek D. Morgoev & Angelika D. Morgoeva & Oksana A. Gavrina & Nikita V. Martyushev & Egor A. Efremenkov & Qi Mengxu, 2022. "Methods of Forecasting Electric Energy Consumption: A Literature Review," Energies, MDPI, vol. 15(23), pages 1-33, November.
- Shi, Jian & Teh, Jiashen & Alharbi, Bader & Lai, Ching-Ming, 2024. "Load forecasting for regional integrated energy system based on two-phase decomposition and mixture prediction model," Energy, Elsevier, vol. 297(C).
- Marta Moure-Garrido & Celeste Campo & Carlos Garcia-Rubio, 2022. "Entropy-Based Anomaly Detection in Household Electricity Consumption," Energies, MDPI, vol. 15(5), pages 1-21, March.
- Abdullah Alrasheedi & Abdulaziz Almalaq, 2022. "Hybrid Deep Learning Applied on Saudi Smart Grids for Short-Term Load Forecasting," Mathematics, MDPI, vol. 10(15), pages 1-22, July.
- Shi, Jian & Teh, Jiashen, 2024. "Load forecasting for regional integrated energy system based on complementary ensemble empirical mode decomposition and multi-model fusion," Applied Energy, Elsevier, vol. 353(PB).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xiao, Liye & Shao, Wei & Wang, Chen & Zhang, Kequan & Lu, Haiyan, 2016. "Research and application of a hybrid model based on multi-objective optimization for electrical load forecasting," Applied Energy, Elsevier, vol. 180(C), pages 213-233.
- Sekhar, Charan & Dahiya, Ratna, 2023. "Robust framework based on hybrid deep learning approach for short term load forecasting of building electricity demand," Energy, Elsevier, vol. 268(C).
- Ashfaq Ahmad & Nadeem Javaid & Abdul Mateen & Muhammad Awais & Zahoor Ali Khan, 2019. "Short-Term Load Forecasting in Smart Grids: An Intelligent Modular Approach," Energies, MDPI, vol. 12(1), pages 1-21, January.
- Athanasios Ioannis Arvanitidis & Dimitrios Bargiotas & Aspassia Daskalopulu & Dimitrios Kontogiannis & Ioannis P. Panapakidis & Lefteri H. Tsoukalas, 2022. "Clustering Informed MLP Models for Fast and Accurate Short-Term Load Forecasting," Energies, MDPI, vol. 15(4), pages 1-14, February.
- Tziolis, Georgios & Spanias, Chrysovalantis & Theodoride, Maria & Theocharides, Spyros & Lopez-Lorente, Javier & Livera, Andreas & Makrides, George & Georghiou, George E., 2023. "Short-term electric net load forecasting for solar-integrated distribution systems based on Bayesian neural networks and statistical post-processing," Energy, Elsevier, vol. 271(C).
- Ayman A. Aly & Bassem F. Felemban & Ardashir Mohammadzadeh & Oscar Castillo & Andrzej Bartoszewicz, 2021. "Frequency Regulation System: A Deep Learning Identification, Type-3 Fuzzy Control and LMI Stability Analysis," Energies, MDPI, vol. 14(22), pages 1-21, November.
- Yildiz, B. & Bilbao, J.I. & Dore, J. & Sproul, A.B., 2017. "Recent advances in the analysis of residential electricity consumption and applications of smart meter data," Applied Energy, Elsevier, vol. 208(C), pages 402-427.
- Dimitrios Kontogiannis & Dimitrios Bargiotas & Aspassia Daskalopulu & Lefteri H. Tsoukalas, 2021. "A Meta-Modeling Power Consumption Forecasting Approach Combining Client Similarity and Causality," Energies, MDPI, vol. 14(19), pages 1-19, September.
- Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2019. "Single and Multi-Sequence Deep Learning Models for Short and Medium Term Electric Load Forecasting," Energies, MDPI, vol. 12(1), pages 1-21, January.
- Seyedeh Narjes Fallah & Ravinesh Chand Deo & Mohammad Shojafar & Mauro Conti & Shahaboddin Shamshirband, 2018. "Computational Intelligence Approaches for Energy Load Forecasting in Smart Energy Management Grids: State of the Art, Future Challenges, and Research Directions," Energies, MDPI, vol. 11(3), pages 1-31, March.
- Zhaorui Meng & Xianze Xu, 2019. "A Hybrid Short-Term Load Forecasting Framework with an Attention-Based Encoder–Decoder Network Based on Seasonal and Trend Adjustment," Energies, MDPI, vol. 12(24), pages 1-14, December.
- Wenting Zhao & Juanjuan Zhao & Xilong Yao & Zhixin Jin & Pan Wang, 2019. "A Novel Adaptive Intelligent Ensemble Model for Forecasting Primary Energy Demand," Energies, MDPI, vol. 12(7), pages 1-28, April.
- Ghimire, Sujan & Nguyen-Huy, Thong & AL-Musaylh, Mohanad S. & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2023. "A novel approach based on integration of convolutional neural networks and echo state network for daily electricity demand prediction," Energy, Elsevier, vol. 275(C).
- Coelho, Vitor N. & Coelho, Igor M. & Coelho, Bruno N. & Reis, Agnaldo J.R. & Enayatifar, Rasul & Souza, Marcone J.F. & Guimarães, Frederico G., 2016. "A self-adaptive evolutionary fuzzy model for load forecasting problems on smart grid environment," Applied Energy, Elsevier, vol. 169(C), pages 567-584.
- Nian Liu & Cheng Wang & Minyang Cheng & Jie Wang, 2016. "A Privacy-Preserving Distributed Optimal Scheduling for Interconnected Microgrids," Energies, MDPI, vol. 9(12), pages 1-18, December.
- Xiao, Liye & Shao, Wei & Liang, Tulu & Wang, Chen, 2016. "A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting," Applied Energy, Elsevier, vol. 167(C), pages 135-153.
- Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
- Ke Yan & Xudong Wang & Yang Du & Ning Jin & Haichao Huang & Hangxia Zhou, 2018. "Multi-Step Short-Term Power Consumption Forecasting with a Hybrid Deep Learning Strategy," Energies, MDPI, vol. 11(11), pages 1-15, November.
- Namrye Son, 2021. "Comparison of the Deep Learning Performance for Short-Term Power Load Forecasting," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
- Nowotarski, Jakub & Weron, Rafał, 2018.
"Recent advances in electricity price forecasting: A review of probabilistic forecasting,"
Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
- Jakub Nowotarski & Rafal Weron, 2016. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," HSC Research Reports HSC/16/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
More about this item
Keywords
smart grids; load forecasting; artificial neural networks; data pre-processing;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7788-:d:684225. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.