Clustering Informed MLP Models for Fast and Accurate Short-Term Load Forecasting
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Jihoon Moon & Yongsung Kim & Minjae Son & Eenjun Hwang, 2018. "Hybrid Short-Term Load Forecasting Scheme Using Random Forest and Multilayer Perceptron," Energies, MDPI, vol. 11(12), pages 1-20, November.
- Hirth, Lion & Mühlenpfordt, Jonathan & Bulkeley, Marisa, 2018. "The ENTSO-E Transparency Platform – A review of Europe’s most ambitious electricity data platform," Applied Energy, Elsevier, vol. 225(C), pages 1054-1067.
- Vasileios M. Laitsos & Dimitrios Bargiotas & Aspassia Daskalopulu & Athanasios Ioannis Arvanitidis & Lefteri H. Tsoukalas, 2021. "An Incentive-Based Implementation of Demand Side Management in Power Systems," Energies, MDPI, vol. 14(23), pages 1-24, November.
- Athanasios Ioannis Arvanitidis & Dimitrios Bargiotas & Aspassia Daskalopulu & Vasileios M. Laitsos & Lefteri H. Tsoukalas, 2021. "Enhanced Short-Term Load Forecasting Using Artificial Neural Networks," Energies, MDPI, vol. 14(22), pages 1-14, November.
- Sadaei, Hossein Javedani & de Lima e Silva, Petrônio Cândido & Guimarães, Frederico Gadelha & Lee, Muhammad Hisyam, 2019. "Short-term load forecasting by using a combined method of convolutional neural networks and fuzzy time series," Energy, Elsevier, vol. 175(C), pages 365-377.
- Dimitrios Kontogiannis & Dimitrios Bargiotas & Aspassia Daskalopulu & Lefteri H. Tsoukalas, 2021. "A Meta-Modeling Power Consumption Forecasting Approach Combining Client Similarity and Causality," Energies, MDPI, vol. 14(19), pages 1-19, September.
- Yu Hua & Na Wang & Keyou Zhao, 2021. "Simultaneous Unknown Input and State Estimation for the Linear System with a Rank-Deficient Distribution Matrix," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-11, January.
- Dimitrios Kontogiannis & Dimitrios Bargiotas & Aspassia Daskalopulu, 2021. "Fuzzy Control System for Smart Energy Management in Residential Buildings Based on Environmental Data," Energies, MDPI, vol. 14(3), pages 1-18, February.
- Yang, Mao & Shi, Chaoyu & Liu, Huiyu, 2021. "Day-ahead wind power forecasting based on the clustering of equivalent power curves," Energy, Elsevier, vol. 218(C).
- Dimitrios Kontogiannis & Dimitrios Bargiotas & Aspassia Daskalopulu, 2020. "Minutely Active Power Forecasting Models Using Neural Networks," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
- Liu, Chunli & Li, Qiang & Wang, Kai, 2021. "State-of-charge estimation and remaining useful life prediction of supercapacitors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- João Victor Jales Melo & George Rossany Soares Lira & Edson Guedes Costa & Antonio F. Leite Neto & Iago B. Oliveira, 2022. "Short-Term Load Forecasting on Individual Consumers," Energies, MDPI, vol. 15(16), pages 1-16, August.
- Max Olinto Moreira & Betania Mafra Kaizer & Takaaki Ohishi & Benedito Donizeti Bonatto & Antonio Carlos Zambroni de Souza & Pedro Paulo Balestrassi, 2022. "Multivariate Strategy Using Artificial Neural Networks for Seasonal Photovoltaic Generation Forecasting," Energies, MDPI, vol. 16(1), pages 1-30, December.
- Vasileios Laitsos & Georgios Vontzos & Dimitrios Bargiotas & Aspassia Daskalopulu & Lefteri H. Tsoukalas, 2023. "Enhanced Automated Deep Learning Application for Short-Term Load Forecasting," Mathematics, MDPI, vol. 11(13), pages 1-21, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ayman A. Aly & Bassem F. Felemban & Ardashir Mohammadzadeh & Oscar Castillo & Andrzej Bartoszewicz, 2021. "Frequency Regulation System: A Deep Learning Identification, Type-3 Fuzzy Control and LMI Stability Analysis," Energies, MDPI, vol. 14(22), pages 1-21, November.
- Dimitrios Kontogiannis & Dimitrios Bargiotas & Aspassia Daskalopulu & Lefteri H. Tsoukalas, 2021. "A Meta-Modeling Power Consumption Forecasting Approach Combining Client Similarity and Causality," Energies, MDPI, vol. 14(19), pages 1-19, September.
- Li, Dezhi & Li, Shuo & Zhang, Shubo & Sun, Jianrui & Wang, Licheng & Wang, Kai, 2022. "Aging state prediction for supercapacitors based on heuristic kalman filter optimization extreme learning machine," Energy, Elsevier, vol. 250(C).
- Vasileios Laitsos & Georgios Vontzos & Dimitrios Bargiotas & Aspassia Daskalopulu & Lefteri H. Tsoukalas, 2023. "Enhanced Automated Deep Learning Application for Short-Term Load Forecasting," Mathematics, MDPI, vol. 11(13), pages 1-21, June.
- Dezhi Li & Dongfang Yang & Liwei Li & Licheng Wang & Kai Wang, 2022. "Electrochemical Impedance Spectroscopy Based on the State of Health Estimation for Lithium-Ion Batteries," Energies, MDPI, vol. 15(18), pages 1-26, September.
- Athanasios Ioannis Arvanitidis & Dimitrios Bargiotas & Aspassia Daskalopulu & Vasileios M. Laitsos & Lefteri H. Tsoukalas, 2021. "Enhanced Short-Term Load Forecasting Using Artificial Neural Networks," Energies, MDPI, vol. 14(22), pages 1-14, November.
- Liu Lu & Wei Wei, 2023. "Influence of Public Sports Services on Residents’ Mental Health at Communities Level: New Insights from China," IJERPH, MDPI, vol. 20(2), pages 1-14, January.
- Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.
- Jihoon Moon & Junhong Kim & Pilsung Kang & Eenjun Hwang, 2020. "Solving the Cold-Start Problem in Short-Term Load Forecasting Using Tree-Based Methods," Energies, MDPI, vol. 13(4), pages 1-37, February.
- Vassilis M. Charitopoulos & Mathilde Fajardy & Chi Kong Chyong & David M. Reiner, 2022.
"The case of 100% electrification of domestic heat in Great Britain,"
Working Papers
EPRG2206, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
- Charitopoulos, V. & Fajardy, M. & Chyong, C. K. & Reiner, D., 2022. "The case of 100% electrification of domestic heat in Great Britain," Cambridge Working Papers in Economics 2210, Faculty of Economics, University of Cambridge.
- Zhang, Ning & Li, Zhiying & Zou, Xun & Quiring, Steven M., 2019. "Comparison of three short-term load forecast models in Southern California," Energy, Elsevier, vol. 189(C).
- Feng, Qianqian & Sun, Xiaolei & Hao, Jun & Li, Jianping, 2021. "Predictability dynamics of multifactor-influenced installed capacity: A perspective of country clustering," Energy, Elsevier, vol. 214(C).
- Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
- Arjan S. Gosal & Janine A. McMahon & Katharine M. Bowgen & Catherine H. Hoppe & Guy Ziv, 2021. "Identifying and Mapping Groups of Protected Area Visitors by Environmental Awareness," Land, MDPI, vol. 10(6), pages 1-14, May.
- Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
- Qinghe Zhao & Xinyi Liu & Junlong Fang, 2023. "Extreme Gradient Boosting Model for Day-Ahead STLF in National Level Power System: Estonia Case Study," Energies, MDPI, vol. 16(24), pages 1-29, December.
- Kazmi, Hussain & Munné-Collado, Íngrid & Mehmood, Fahad & Syed, Tahir Abbas & Driesen, Johan, 2021. "Towards data-driven energy communities: A review of open-source datasets, models and tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
- Wiese, Frauke & Schlecht, Ingmar & Bunke, Wolf-Dieter & Gerbaulet, Clemens & Hirth, Lion & Jahn, Martin & Kunz, Friedrich & Lorenz, Casimir & Mühlenpfordt, Jonathan & Reimann, Juliane & Schill, Wolf-P, 2019.
"Open Power System Data – Frictionless data for electricity system modelling,"
Applied Energy, Elsevier, vol. 236(C), pages 401-409.
- Wiese, Frauke & Schlecht, Ingmar & Bunke, Wolf-Dieter & Gerbaulet, Clemens & Hirth, Lion & Jahn, Martin & Kunz, Friedrich & Lorenz, Casimir & Mühlenpfordt, Jonathan & Reimann, Juliane & Schill, Wolf-P, 2019. "Open Power System Data – Frictionless data for electricity system modelling," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 236, pages 401-409.
- Wulfran Fendzi Mbasso & Reagan Jean Jacques Molu & Serge Raoul Dzonde Naoussi & Saatong Kenfack, 2022. "Demand-Supply Forecasting based on Deep Learning for Electricity Balance in Cameroon," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 99-103, July.
More about this item
Keywords
short-term load forecasting; multi-layer perceptrons; K-Means; Fuzzy C-Means;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1295-:d:746504. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.