IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i12p1031-d84578.html
   My bibliography  Save this article

A Privacy-Preserving Distributed Optimal Scheduling for Interconnected Microgrids

Author

Listed:
  • Nian Liu

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China)

  • Cheng Wang

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China)

  • Minyang Cheng

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China)

  • Jie Wang

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China)

Abstract

With the development of microgrids (MGs), interconnected operation of multiple MGs is becoming a promising strategy for the smart grid. In this paper, a privacy-preserving distributed optimal scheduling method is proposed for the interconnected microgrids (IMG) with a battery energy storage system (BESS) and renewable energy resources (RESs). The optimal scheduling problem is modeled to minimize the coalitional operation cost of the IMG, including the fuel cost of conventional distributed generators and the life loss cost of BESSs. By using the framework of the alternating direction method of multipliers (ADMM), a distributed optimal scheduling model and an iteration solution algorithm for the IMG is introduced; only the expected exchanging power (EEP) of each MG is required during the iterations. Furthermore, a privacy-preserving strategy for the sharing of the EEP among MGs is designed to work with the mechanism of the distributed algorithm. According to the security analysis, the EEP can be delivered in a cooperative and privacy-preserving way. A case study and numerical results are given in terms of the convergence of the algorithm, the comparison of the costs and the implementation efficiency.

Suggested Citation

  • Nian Liu & Cheng Wang & Minyang Cheng & Jie Wang, 2016. "A Privacy-Preserving Distributed Optimal Scheduling for Interconnected Microgrids," Energies, MDPI, vol. 9(12), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:12:p:1031-:d:84578
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/12/1031/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/12/1031/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Akinola, O.A., 2016. "Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building," Applied Energy, Elsevier, vol. 171(C), pages 153-171.
    2. Nan Zhou & Nian Liu & Jianhua Zhang & Jinyong Lei, 2016. "Multi-Objective Optimal Sizing for Battery Storage of PV-Based Microgrid with Demand Response," Energies, MDPI, vol. 9(8), pages 1-24, July.
    3. Liu, Nian & Tang, Qingfeng & Zhang, Jianhua & Fan, Wei & Liu, Jie, 2014. "A hybrid forecasting model with parameter optimization for short-term load forecasting of micro-grids," Applied Energy, Elsevier, vol. 129(C), pages 336-345.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Richard T. Meyer, 2020. "Distributed Switched Optimal Control of an Electric Vehicle," Energies, MDPI, vol. 13(13), pages 1-27, July.
    2. Pan Wu & Wentao Huang & Nengling Tai & Zhoujun Ma & Xiaodong Zheng & Yong Zhang, 2019. "A Multi-Layer Coordinated Control Scheme to Improve the Operation Friendliness of Grid-Connected Multiple Microgrids," Energies, MDPI, vol. 12(2), pages 1-21, January.
    3. Diptish Saha & Najmeh Bazmohammadi & Juan C. Vasquez & Josep M. Guerrero, 2023. "Multiple Microgrids: A Review of Architectures and Operation and Control Strategies," Energies, MDPI, vol. 16(2), pages 1-32, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiaxin Lu & Weijun Wang & Yingchao Zhang & Song Cheng, 2017. "Multi-Objective Optimal Design of Stand-Alone Hybrid Energy System Using Entropy Weight Method Based on HOMER," Energies, MDPI, vol. 10(10), pages 1-17, October.
    2. Pregelj, Boštjan & Micor, Michał & Dolanc, Gregor & Petrovčič, Janko & Jovan, Vladimir, 2016. "Impact of fuel cell and battery size to overall system performance – A diesel fuel-cell APU case study," Applied Energy, Elsevier, vol. 182(C), pages 365-375.
    3. Xiao, Liye & Shao, Wei & Liang, Tulu & Wang, Chen, 2016. "A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting," Applied Energy, Elsevier, vol. 167(C), pages 135-153.
    4. Ahmad Alzahrani & Senthil Kumar Ramu & Gunapriya Devarajan & Indragandhi Vairavasundaram & Subramaniyaswamy Vairavasundaram, 2022. "A Review on Hydrogen-Based Hybrid Microgrid System: Topologies for Hydrogen Energy Storage, Integration, and Energy Management with Solar and Wind Energy," Energies, MDPI, vol. 15(21), pages 1-32, October.
    5. Manish Mohanpurkar & Yusheng Luo & Danny Terlip & Fernando Dias & Kevin Harrison & Joshua Eichman & Rob Hovsapian & Jennifer Kurtz, 2017. "Electrolyzers Enhancing Flexibility in Electric Grids," Energies, MDPI, vol. 10(11), pages 1-17, November.
    6. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    7. Nguyen, Hai Tra & Safder, Usman & Nhu Nguyen, X.Q. & Yoo, ChangKyoo, 2020. "Multi-objective decision-making and optimal sizing of a hybrid renewable energy system to meet the dynamic energy demands of a wastewater treatment plant," Energy, Elsevier, vol. 191(C).
    8. Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2018. "Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches †," Energies, MDPI, vol. 11(7), pages 1-20, June.
    9. Talaat, M. & Farahat, M.A. & Elkholy, M.H., 2019. "Renewable power integration: Experimental and simulation study to investigate the ability of integrating wave, solar and wind energies," Energy, Elsevier, vol. 170(C), pages 668-682.
    10. Asad Rasheed & Kalyana C. Veluvolu, 2024. "Respiratory Motion Prediction with Empirical Mode Decomposition-Based Random Vector Functional Link," Mathematics, MDPI, vol. 12(4), pages 1-20, February.
    11. Coelho, Vitor N. & Coelho, Igor M. & Coelho, Bruno N. & Cohen, Miri Weiss & Reis, Agnaldo J.R. & Silva, Sidelmo M. & Souza, Marcone J.F. & Fleming, Peter J. & Guimarães, Frederico G., 2016. "Multi-objective energy storage power dispatching using plug-in vehicles in a smart-microgrid," Renewable Energy, Elsevier, vol. 89(C), pages 730-742.
    12. Wen, Shuli & Lan, Hai & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun & Cheng, Peng, 2016. "Allocation of ESS by interval optimization method considering impact of ship swinging on hybrid PV/diesel ship power system," Applied Energy, Elsevier, vol. 175(C), pages 158-167.
    13. Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
    14. Haesung Jo & Jaemin Park & Insu Kim, 2021. "Environmentally Constrained Optimal Dispatch Method for Combined Cooling, Heating, and Power Systems Using Two-Stage Optimization," Energies, MDPI, vol. 14(14), pages 1-20, July.
    15. Li, Wei & Sun, Wen & Li, Guomin & Cui, Pengfei & Wu, Wen & Jin, Baihui, 2017. "Temporal and spatial heterogeneity of carbon intensity in China's construction industry," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 162-173.
    16. Ben Christopher, S.J. & Carolin Mabel, M., 2020. "A bio-inspired approach for probabilistic energy management of micro-grid incorporating uncertainty in statistical cost estimation," Energy, Elsevier, vol. 203(C).
    17. Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
    18. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    19. Chabok, Hossein & Aghaei, Jamshid & Sheikh, Morteza & Roustaei, Mahmoud & Zare, Mohsen & Niknam, Taher & Lehtonen, Matti & Shafi-khah, Miadreza & Catalão, João P.S., 2022. "Transmission-constrained optimal allocation of price-maker wind-storage units in electricity markets," Applied Energy, Elsevier, vol. 310(C).
    20. Jung, Seunghoon & Jeoung, Jaewon & Kang, Hyuna & Hong, Taehoon, 2021. "Optimal planning of a rooftop PV system using GIS-based reinforcement learning," Applied Energy, Elsevier, vol. 298(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:12:p:1031-:d:84578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.