IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6124-d895783.html
   My bibliography  Save this article

Day-Ahead Load Demand Forecasting in Urban Community Cluster Microgrids Using Machine Learning Methods

Author

Listed:
  • Sivakavi Naga Venkata Bramareswara Rao

    (Department of Electrical and Electronics Engineering, Sir C. R. Reddy College of Engineering, Eluru 534007, India)

  • Venkata Pavan Kumar Yellapragada

    (School of Electronics Engineering, VIT-AP University, Amaravati 522237, India)

  • Kottala Padma

    (Department of Electrical Engineering, Andhra University College of Engineering (A), Visakhapatnam 530003, India)

  • Darsy John Pradeep

    (School of Electronics Engineering, VIT-AP University, Amaravati 522237, India)

  • Challa Pradeep Reddy

    (School of Computer Science and Engineering, VIT-AP University, Amaravati 522237, India)

  • Mohammad Amir

    (Department of Electrical Engineering, Faculty of Engineering and Technology, Jamia Millia Islamia Central University, Delhi 243601, India)

  • Shady S. Refaat

    (Department of Electrical Engineering, Texas A&M University, Doha P.O. Box 23874, Qatar
    School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UK)

Abstract

The modern-day urban energy sector possesses the integrated operation of various microgrids located in a vicinity, named cluster microgrids, which helps to reduce the utility grid burden. However, these cluster microgrids require a precise electric load projection to manage the operations, as the integrated operation of multiple microgrids leads to dynamic load demand. Thus, load forecasting is a complicated operation that requires more than statistical methods. There are different machine learning methods available in the literature that are applied to single microgrid cases. In this line, the cluster microgrids concept is a new application, which is very limitedly discussed in the literature. Thus, to identify the best load forecasting method in cluster microgrids, this article implements a variety of machine learning algorithms, including linear regression (quadratic), support vector machines, long short-term memory, and artificial neural networks (ANN) to forecast the load demand in the short term. The effectiveness of these methods is analyzed by computing various factors such as root mean square error, R-square, mean square error, mean absolute error, mean absolute percentage error, and time of computation. From this, it is observed that the ANN provides effective forecasting results. In addition, three distinct optimization techniques are used to find the optimum ANN training algorithm: Levenberg–Marquardt, Bayesian Regularization, and Scaled Conjugate Gradient. The effectiveness of these optimization algorithms is verified in terms of training, test, validation, and error analysis. The proposed system simulation is carried out using the MATLAB/Simulink-2021a ® software. From the results, it is found that the Levenberg–Marquardt optimization algorithm-based ANN model gives the best electrical load forecasting results.

Suggested Citation

  • Sivakavi Naga Venkata Bramareswara Rao & Venkata Pavan Kumar Yellapragada & Kottala Padma & Darsy John Pradeep & Challa Pradeep Reddy & Mohammad Amir & Shady S. Refaat, 2022. "Day-Ahead Load Demand Forecasting in Urban Community Cluster Microgrids Using Machine Learning Methods," Energies, MDPI, vol. 15(17), pages 1-25, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6124-:d:895783
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6124/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6124/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jaime Buitrago & Shihab Asfour, 2017. "Short-Term Forecasting of Electric Loads Using Nonlinear Autoregressive Artificial Neural Networks with Exogenous Vector Inputs," Energies, MDPI, vol. 10(1), pages 1-24, January.
    2. Md Jamal Ahmed Shohan & Md Omar Faruque & Simon Y. Foo, 2022. "Forecasting of Electric Load Using a Hybrid LSTM-Neural Prophet Model," Energies, MDPI, vol. 15(6), pages 1-18, March.
    3. Sivakavi Naga Venkata Bramareswara Rao & Yellapragada Venkata Pavan Kumar & Darsy John Pradeep & Challa Pradeep Reddy & Aymen Flah & Habib Kraiem & Jawad F. Al-Asad, 2022. "Power Quality Improvement in Renewable-Energy-Based Microgrid Clusters Using Fuzzy Space Vector PWM Controlled Inverter," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    4. Andrea Maria N. C. Ribeiro & Pedro Rafael X. do Carmo & Patricia Takako Endo & Pierangelo Rosati & Theo Lynn, 2022. "Short- and Very Short-Term Firm-Level Load Forecasting for Warehouses: A Comparison of Machine Learning and Deep Learning Models," Energies, MDPI, vol. 15(3), pages 1-24, January.
    5. Athanasios Ioannis Arvanitidis & Dimitrios Bargiotas & Aspassia Daskalopulu & Vasileios M. Laitsos & Lefteri H. Tsoukalas, 2021. "Enhanced Short-Term Load Forecasting Using Artificial Neural Networks," Energies, MDPI, vol. 14(22), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. E. Poongulali & K. Selvaraj, 2024. "Improved load demand prediction for cluster microgrids using modified temporal convolutional feed forward network," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 87(3), pages 561-574, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandru Pîrjan & Simona-Vasilica Oprea & George Căruțașu & Dana-Mihaela Petroșanu & Adela Bâra & Cristina Coculescu, 2017. "Devising Hourly Forecasting Solutions Regarding Electricity Consumption in the Case of Commercial Center Type Consumers," Energies, MDPI, vol. 10(11), pages 1-36, October.
    2. Timothy Praditia & Thilo Walser & Sergey Oladyshkin & Wolfgang Nowak, 2020. "Improving Thermochemical Energy Storage Dynamics Forecast with Physics-Inspired Neural Network Architecture," Energies, MDPI, vol. 13(15), pages 1-26, July.
    3. Mingang Tan & Chaohai Zhang & Bin Chen, 2022. "Size Estimation of Bulk Capacitor Removal Using Limited Power Quality Monitors in the Distribution Network," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    4. Alhamwi, Alaa & Medjroubi, Wided & Vogt, Thomas & Agert, Carsten, 2018. "Modelling urban energy requirements using open source data and models," Applied Energy, Elsevier, vol. 231(C), pages 1100-1108.
    5. Akash Kumar & Bing Yan & Ace Bilton, 2022. "Machine Learning-Based Load Forecasting for Nanogrid Peak Load Cost Reduction," Energies, MDPI, vol. 15(18), pages 1-23, September.
    6. Fjelkestam Frederiksen, Cornelia A. & Cai, Zuansi, 2022. "Novel machine learning approach for solar photovoltaic energy output forecast using extra-terrestrial solar irradiance," Applied Energy, Elsevier, vol. 306(PB).
    7. Salma Hamad Almuhaini & Nahid Sultana, 2023. "Forecasting Long-Term Electricity Consumption in Saudi Arabia Based on Statistical and Machine Learning Algorithms to Enhance Electric Power Supply Management," Energies, MDPI, vol. 16(4), pages 1-28, February.
    8. Gogulamudi Pradeep Reddy & Yellapragada Venkata Pavan Kumar & Maddikera Kalyan Chakravarthi & Aymen Flah, 2022. "Refined Network Topology for Improved Reliability and Enhanced Dijkstra Algorithm for Optimal Path Selection during Link Failures in Cluster Microgrids," Sustainability, MDPI, vol. 14(16), pages 1-21, August.
    9. Bin Li & Mingzhen Lu & Yiyi Zhang & Jia Huang, 2019. "A Weekend Load Forecasting Model Based on Semi-Parametric Regression Analysis Considering Weather and Load Interaction," Energies, MDPI, vol. 12(20), pages 1-19, October.
    10. Jee-Heon Kim & Nam-Chul Seong & Wonchang Choi, 2019. "Cooling Load Forecasting via Predictive Optimization of a Nonlinear Autoregressive Exogenous (NARX) Neural Network Model," Sustainability, MDPI, vol. 11(23), pages 1-13, November.
    11. Karodine Chreng & Han Soo Lee & Soklin Tuy, 2022. "A Hybrid Model for Electricity Demand Forecast Using Improved Ensemble Empirical Mode Decomposition and Recurrent Neural Networks with ERA5 Climate Variables," Energies, MDPI, vol. 15(19), pages 1-26, October.
    12. Roman V. Klyuev & Irbek D. Morgoev & Angelika D. Morgoeva & Oksana A. Gavrina & Nikita V. Martyushev & Egor A. Efremenkov & Qi Mengxu, 2022. "Methods of Forecasting Electric Energy Consumption: A Literature Review," Energies, MDPI, vol. 15(23), pages 1-33, November.
    13. Yellapragada Venkata Pavan Kumar & Sivakavi Naga Venkata Bramareswara Rao & Kottala Padma & Challa Pradeep Reddy & Darsy John Pradeep & Aymen Flah & Habib Kraiem & Michał Jasiński & Srete Nikolovski, 2022. "Fuzzy Hysteresis Current Controller for Power Quality Enhancement in Renewable Energy Integrated Clusters," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    14. Federico Divina & Aude Gilson & Francisco Goméz-Vela & Miguel García Torres & José F. Torres, 2018. "Stacking Ensemble Learning for Short-Term Electricity Consumption Forecasting," Energies, MDPI, vol. 11(4), pages 1-31, April.
    15. Zina Boussaada & Octavian Curea & Ahmed Remaci & Haritza Camblong & Najiba Mrabet Bellaaj, 2018. "A Nonlinear Autoregressive Exogenous (NARX) Neural Network Model for the Prediction of the Daily Direct Solar Radiation," Energies, MDPI, vol. 11(3), pages 1-21, March.
    16. SeyedAli Ghahari & Cesar Queiroz & Samuel Labi & Sue McNeil, 2021. "Cluster Forecasting of Corruption Using Nonlinear Autoregressive Models with Exogenous Variables (NARX)—An Artificial Neural Network Analysis," Sustainability, MDPI, vol. 13(20), pages 1-20, October.
    17. Warut Pannakkong & Thanyaporn Harncharnchai & Jirachai Buddhakulsomsiri, 2022. "Forecasting Daily Electricity Consumption in Thailand Using Regression, Artificial Neural Network, Support Vector Machine, and Hybrid Models," Energies, MDPI, vol. 15(9), pages 1-21, April.
    18. Marta Moure-Garrido & Celeste Campo & Carlos Garcia-Rubio, 2022. "Entropy-Based Anomaly Detection in Household Electricity Consumption," Energies, MDPI, vol. 15(5), pages 1-21, March.
    19. Sana Mujeeb & Nadeem Javaid & Manzoor Ilahi & Zahid Wadud & Farruh Ishmanov & Muhammad Khalil Afzal, 2019. "Deep Long Short-Term Memory: A New Price and Load Forecasting Scheme for Big Data in Smart Cities," Sustainability, MDPI, vol. 11(4), pages 1-29, February.
    20. Anam-Nawaz Khan & Naeem Iqbal & Atif Rizwan & Rashid Ahmad & Do-Hyeun Kim, 2021. "An Ensemble Energy Consumption Forecasting Model Based on Spatial-Temporal Clustering Analysis in Residential Buildings," Energies, MDPI, vol. 14(11), pages 1-25, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6124-:d:895783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.