Exploratory Data Analysis Based Short-Term Electrical Load Forecasting: A Comprehensive Analysis
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wei Sun & Chongchong Zhang, 2018. "A Hybrid BA-ELM Model Based on Factor Analysis and Similar-Day Approach for Short-Term Load Forecasting," Energies, MDPI, vol. 11(5), pages 1-18, May.
- Jaime Buitrago & Shihab Asfour, 2017. "Short-Term Forecasting of Electric Loads Using Nonlinear Autoregressive Artificial Neural Networks with Exogenous Vector Inputs," Energies, MDPI, vol. 10(1), pages 1-24, January.
- Jallal, Mohammed Ali & González-Vidal, Aurora & Skarmeta, Antonio F. & Chabaa, Samira & Zeroual, Abdelouhab, 2020. "A hybrid neuro-fuzzy inference system-based algorithm for time series forecasting applied to energy consumption prediction," Applied Energy, Elsevier, vol. 268(C).
- Cihan Turhan & Silvio Simani & Ivan Zajic & Gulden Gokcen Akkurt, 2017. "Performance Analysis of Data-Driven and Model-Based Control Strategies Applied to a Thermal Unit Model," Energies, MDPI, vol. 10(1), pages 1-20, January.
- Andrei M. Tudose & Irina I. Picioroaga & Dorian O. Sidea & Constantin Bulac & Valentin A. Boicea, 2021. "Short-Term Load Forecasting Using Convolutional Neural Networks in COVID-19 Context: The Romanian Case Study," Energies, MDPI, vol. 14(13), pages 1-19, July.
- Ivana Kiprijanovska & Simon Stankoski & Igor Ilievski & Slobodan Jovanovski & Matjaž Gams & Hristijan Gjoreski, 2020. "HousEEC: Day-Ahead Household Electrical Energy Consumption Forecasting Using Deep Learning," Energies, MDPI, vol. 13(10), pages 1-29, May.
- Ediger, Volkan S. & Akar, Sertac, 2007. "ARIMA forecasting of primary energy demand by fuel in Turkey," Energy Policy, Elsevier, vol. 35(3), pages 1701-1708, March.
- Deb, Chirag & Zhang, Fan & Yang, Junjing & Lee, Siew Eang & Shah, Kwok Wei, 2017. "A review on time series forecasting techniques for building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 902-924.
- Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2018. "Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches †," Energies, MDPI, vol. 11(7), pages 1-20, June.
- Guo-Feng Fan & Yan-Hui Guo & Jia-Mei Zheng & Wei-Chiang Hong, 2019. "Application of the Weighted K-Nearest Neighbor Algorithm for Short-Term Load Forecasting," Energies, MDPI, vol. 12(5), pages 1-19, March.
- Ismail Shah & Hasnain Iftikhar & Sajid Ali & Depeng Wang, 2019. "Short-Term Electricity Demand Forecasting Using Components Estimation Technique," Energies, MDPI, vol. 12(13), pages 1-17, July.
- Yildiz, B. & Bilbao, J.I. & Sproul, A.B., 2017. "A review and analysis of regression and machine learning models on commercial building electricity load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1104-1122.
- Hussain, I. & Ali, S.M. & Khan, B. & Ullah, Z. & Mehmood, C.A. & Jawad, M. & Farid, U. & Haider, A., 2019. "Stochastic Wind Energy Management Model within smart grid framework: A joint Bi-directional Service Level Agreement (SLA) between smart grid and Wind Energy District Prosumers," Renewable Energy, Elsevier, vol. 134(C), pages 1017-1033.
- Tayab, Usman Bashir & Zia, Ali & Yang, Fuwen & Lu, Junwei & Kashif, Muhammad, 2020. "Short-term load forecasting for microgrid energy management system using hybrid HHO-FNN model with best-basis stationary wavelet packet transform," Energy, Elsevier, vol. 203(C).
- Nima Amjady & Farshid Keynia, 2011. "A New Neural Network Approach to Short Term Load Forecasting of Electrical Power Systems," Energies, MDPI, vol. 4(3), pages 1-16, March.
- Grzegorz Dudek, 2021. "Short-Term Load Forecasting Using Neural Networks with Pattern Similarity-Based Error Weights," Energies, MDPI, vol. 14(11), pages 1-18, May.
- Miguel López & Carlos Sans & Sergio Valero & Carolina Senabre, 2018. "Empirical Comparison of Neural Network and Auto-Regressive Models in Short-Term Load Forecasting," Energies, MDPI, vol. 11(8), pages 1-19, August.
- Abu-Shikhah, Nazih & Elkarmi, Fawwaz, 2011. "Medium-term electric load forecasting using singular value decomposition," Energy, Elsevier, vol. 36(7), pages 4259-4271.
- Seyedeh Narjes Fallah & Ravinesh Chand Deo & Mohammad Shojafar & Mauro Conti & Shahaboddin Shamshirband, 2018. "Computational Intelligence Approaches for Energy Load Forecasting in Smart Energy Management Grids: State of the Art, Future Challenges, and Research Directions," Energies, MDPI, vol. 11(3), pages 1-31, March.
- Ibrahim Salem Jahan & Vaclav Snasel & Stanislav Misak, 2020. "Intelligent Systems for Power Load Forecasting: A Study Review," Energies, MDPI, vol. 13(22), pages 1-12, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Warut Pannakkong & Thanyaporn Harncharnchai & Jirachai Buddhakulsomsiri, 2022. "Forecasting Daily Electricity Consumption in Thailand Using Regression, Artificial Neural Network, Support Vector Machine, and Hybrid Models," Energies, MDPI, vol. 15(9), pages 1-21, April.
- Zhou, Wenhao & Li, Hailin & Zhang, Zhiwei, 2022. "A novel seasonal fractional grey model for predicting electricity demand: A case study of Zhejiang in China," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 128-147.
- Khizer Mehmood & Naveed Ishtiaq Chaudhary & Zeshan Aslam Khan & Muhammad Asif Zahoor Raja & Khalid Mehmood Cheema & Ahmad H. Milyani, 2022. "Design of Aquila Optimization Heuristic for Identification of Control Autoregressive Systems," Mathematics, MDPI, vol. 10(10), pages 1-23, May.
- Jicheng Liu & Yu Yin, 2022. "Power Load Forecasting Considering Climate Factors Based on IPSO-Elman Method in China," Energies, MDPI, vol. 15(3), pages 1-23, February.
- Nazila Pourhaji & Mohammad Asadpour & Ali Ahmadian & Ali Elkamel, 2022. "The Investigation of Monthly/Seasonal Data Clustering Impact on Short-Term Electricity Price Forecasting Accuracy: Ontario Province Case Study," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
- Maksymilian Mądziel & Tiziana Campisi, 2023. "Energy Consumption of Electric Vehicles: Analysis of Selected Parameters Based on Created Database," Energies, MDPI, vol. 16(3), pages 1-18, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
- Hammad Mahmoud A. & Jereb Borut & Rosi Bojan & Dragan Dejan, 2020. "Methods and Models for Electric Load Forecasting: A Comprehensive Review," Logistics, Supply Chain, Sustainability and Global Challenges, Sciendo, vol. 11(1), pages 51-76, February.
- Nahid Sultana & S. M. Zakir Hossain & Salma Hamad Almuhaini & Dilek Düştegör, 2022. "Bayesian Optimization Algorithm-Based Statistical and Machine Learning Approaches for Forecasting Short-Term Electricity Demand," Energies, MDPI, vol. 15(9), pages 1-26, May.
- Fanidhar Dewangan & Almoataz Y. Abdelaziz & Monalisa Biswal, 2023. "Load Forecasting Models in Smart Grid Using Smart Meter Information: A Review," Energies, MDPI, vol. 16(3), pages 1-55, January.
- Seok-Jun Bu & Sung-Bae Cho, 2020. "Time Series Forecasting with Multi-Headed Attention-Based Deep Learning for Residential Energy Consumption," Energies, MDPI, vol. 13(18), pages 1-16, September.
- Chaturvedi, Shobhit & Rajasekar, Elangovan & Natarajan, Sukumar & McCullen, Nick, 2022. "A comparative assessment of SARIMA, LSTM RNN and Fb Prophet models to forecast total and peak monthly energy demand for India," Energy Policy, Elsevier, vol. 168(C).
- Fatma Yaprakdal, 2022. "An Ensemble Deep-Learning-Based Model for Hour-Ahead Load Forecasting with a Feature Selection Approach: A Comparative Study with State-of-the-Art Methods," Energies, MDPI, vol. 16(1), pages 1-13, December.
- Alexandru Pîrjan & Simona-Vasilica Oprea & George Căruțașu & Dana-Mihaela Petroșanu & Adela Bâra & Cristina Coculescu, 2017. "Devising Hourly Forecasting Solutions Regarding Electricity Consumption in the Case of Commercial Center Type Consumers," Energies, MDPI, vol. 10(11), pages 1-36, October.
- Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
- Wang, Qiang & Jiang, Feng, 2019. "Integrating linear and nonlinear forecasting techniques based on grey theory and artificial intelligence to forecast shale gas monthly production in Pennsylvania and Texas of the United States," Energy, Elsevier, vol. 178(C), pages 781-803.
- Jee-Heon Kim & Nam-Chul Seong & Wonchang Choi, 2019. "Cooling Load Forecasting via Predictive Optimization of a Nonlinear Autoregressive Exogenous (NARX) Neural Network Model," Sustainability, MDPI, vol. 11(23), pages 1-13, November.
- Arash Moradzadeh & Sahar Zakeri & Maryam Shoaran & Behnam Mohammadi-Ivatloo & Fazel Mohammadi, 2020. "Short-Term Load Forecasting of Microgrid via Hybrid Support Vector Regression and Long Short-Term Memory Algorithms," Sustainability, MDPI, vol. 12(17), pages 1-17, August.
- Karodine Chreng & Han Soo Lee & Soklin Tuy, 2022. "A Hybrid Model for Electricity Demand Forecast Using Improved Ensemble Empirical Mode Decomposition and Recurrent Neural Networks with ERA5 Climate Variables," Energies, MDPI, vol. 15(19), pages 1-26, October.
- Hadjout, D. & Torres, J.F. & Troncoso, A. & Sebaa, A. & Martínez-Álvarez, F., 2022. "Electricity consumption forecasting based on ensemble deep learning with application to the Algerian market," Energy, Elsevier, vol. 243(C).
- Federico Divina & Aude Gilson & Francisco Goméz-Vela & Miguel García Torres & José F. Torres, 2018. "Stacking Ensemble Learning for Short-Term Electricity Consumption Forecasting," Energies, MDPI, vol. 11(4), pages 1-31, April.
- R. Rueda & M. P. Cuéllar & M. Molina-Solana & Y. Guo & M. C. Pegalajar, 2019. "Generalised Regression Hypothesis Induction for Energy Consumption Forecasting," Energies, MDPI, vol. 12(6), pages 1-22, March.
- Ng, Rong Wang & Begam, Kasim Mumtaj & Rajkumar, Rajprasad Kumar & Wong, Yee Wan & Chong, Lee Wai, 2021. "An improved self-organizing incremental neural network model for short-term time-series load prediction," Applied Energy, Elsevier, vol. 292(C).
- Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2020. "Multi-Sequence LSTM-RNN Deep Learning and Metaheuristics for Electric Load Forecasting," Energies, MDPI, vol. 13(2), pages 1-21, January.
- Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2019. "Single and Multi-Sequence Deep Learning Models for Short and Medium Term Electric Load Forecasting," Energies, MDPI, vol. 12(1), pages 1-21, January.
- O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.
More about this item
Keywords
short-term load forecasting; time-series forecasting; exploratory data analysis; neural network; Levenberg–Marquardt;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5510-:d:628657. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.