IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5510-d628657.html
   My bibliography  Save this article

Exploratory Data Analysis Based Short-Term Electrical Load Forecasting: A Comprehensive Analysis

Author

Listed:
  • Umar Javed

    (Department of Electrical and Computer Engineering, COMSATS University Islamabad, Lahore 54000, Pakistan)

  • Khalid Ijaz

    (Electrical Engineering Department, University of Management and Technology, Lahore 54000, Pakistan)

  • Muhammad Jawad

    (Department of Electrical and Computer Engineering, COMSATS University Islamabad, Lahore 54000, Pakistan)

  • Ejaz A. Ansari

    (Department of Electrical and Computer Engineering, COMSATS University Islamabad, Lahore 54000, Pakistan)

  • Noman Shabbir

    (Department of Electrical Power Engineering & Mechatronics, Tallinn University of Technology, 12616 Tallinn, Estonia)

  • Lauri Kütt

    (Department of Electrical Power Engineering & Mechatronics, Tallinn University of Technology, 12616 Tallinn, Estonia)

  • Oleksandr Husev

    (Department of Electrical Power Engineering & Mechatronics, Tallinn University of Technology, 12616 Tallinn, Estonia)

Abstract

Power system planning in numerous electric utilities merely relies on the conventional statistical methodologies, such as ARIMA for short-term electrical load forecasting, which is incapable of determining the non-linearities induced by the non-linear seasonal data, which affect the electrical load. This research work presents a comprehensive overview of modern linear and non-linear parametric modeling techniques for short-term electrical load forecasting to ensure stable and reliable power system operations by mitigating non-linearities in electrical load data. Based on the findings of exploratory data analysis, the temporal and climatic factors are identified as the potential input features in these modeling techniques. The real-time electrical load and meteorological data of the city of Lahore in Pakistan are considered to analyze the reliability of different state-of-the-art linear and non-linear parametric methodologies. Based on performance indices, such as Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE), the qualitative and quantitative comparisons have been conferred among these scientific rationales. The experimental results reveal that the ANN–LM with a single hidden layer performs relatively better in terms of performance indices compared to OE, ARX, ARMAX, SVM, ANN–PSO, KNN, ANN–LM with two hidden layers and bootstrap aggregation models.

Suggested Citation

  • Umar Javed & Khalid Ijaz & Muhammad Jawad & Ejaz A. Ansari & Noman Shabbir & Lauri Kütt & Oleksandr Husev, 2021. "Exploratory Data Analysis Based Short-Term Electrical Load Forecasting: A Comprehensive Analysis," Energies, MDPI, vol. 14(17), pages 1-22, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5510-:d:628657
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5510/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5510/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei Sun & Chongchong Zhang, 2018. "A Hybrid BA-ELM Model Based on Factor Analysis and Similar-Day Approach for Short-Term Load Forecasting," Energies, MDPI, vol. 11(5), pages 1-18, May.
    2. Cihan Turhan & Silvio Simani & Ivan Zajic & Gulden Gokcen Akkurt, 2017. "Performance Analysis of Data-Driven and Model-Based Control Strategies Applied to a Thermal Unit Model," Energies, MDPI, vol. 10(1), pages 1-20, January.
    3. Andrei M. Tudose & Irina I. Picioroaga & Dorian O. Sidea & Constantin Bulac & Valentin A. Boicea, 2021. "Short-Term Load Forecasting Using Convolutional Neural Networks in COVID-19 Context: The Romanian Case Study," Energies, MDPI, vol. 14(13), pages 1-19, July.
    4. Ediger, Volkan S. & Akar, Sertac, 2007. "ARIMA forecasting of primary energy demand by fuel in Turkey," Energy Policy, Elsevier, vol. 35(3), pages 1701-1708, March.
    5. Deb, Chirag & Zhang, Fan & Yang, Junjing & Lee, Siew Eang & Shah, Kwok Wei, 2017. "A review on time series forecasting techniques for building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 902-924.
    6. Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2018. "Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches †," Energies, MDPI, vol. 11(7), pages 1-20, June.
    7. Nima Amjady & Farshid Keynia, 2011. "A New Neural Network Approach to Short Term Load Forecasting of Electrical Power Systems," Energies, MDPI, vol. 4(3), pages 1-16, March.
    8. Grzegorz Dudek, 2021. "Short-Term Load Forecasting Using Neural Networks with Pattern Similarity-Based Error Weights," Energies, MDPI, vol. 14(11), pages 1-18, May.
    9. Miguel López & Carlos Sans & Sergio Valero & Carolina Senabre, 2018. "Empirical Comparison of Neural Network and Auto-Regressive Models in Short-Term Load Forecasting," Energies, MDPI, vol. 11(8), pages 1-19, August.
    10. Seyedeh Narjes Fallah & Ravinesh Chand Deo & Mohammad Shojafar & Mauro Conti & Shahaboddin Shamshirband, 2018. "Computational Intelligence Approaches for Energy Load Forecasting in Smart Energy Management Grids: State of the Art, Future Challenges, and Research Directions," Energies, MDPI, vol. 11(3), pages 1-31, March.
    11. Jaime Buitrago & Shihab Asfour, 2017. "Short-Term Forecasting of Electric Loads Using Nonlinear Autoregressive Artificial Neural Networks with Exogenous Vector Inputs," Energies, MDPI, vol. 10(1), pages 1-24, January.
    12. Jallal, Mohammed Ali & González-Vidal, Aurora & Skarmeta, Antonio F. & Chabaa, Samira & Zeroual, Abdelouhab, 2020. "A hybrid neuro-fuzzy inference system-based algorithm for time series forecasting applied to energy consumption prediction," Applied Energy, Elsevier, vol. 268(C).
    13. Ivana Kiprijanovska & Simon Stankoski & Igor Ilievski & Slobodan Jovanovski & Matjaž Gams & Hristijan Gjoreski, 2020. "HousEEC: Day-Ahead Household Electrical Energy Consumption Forecasting Using Deep Learning," Energies, MDPI, vol. 13(10), pages 1-29, May.
    14. Guo-Feng Fan & Yan-Hui Guo & Jia-Mei Zheng & Wei-Chiang Hong, 2019. "Application of the Weighted K-Nearest Neighbor Algorithm for Short-Term Load Forecasting," Energies, MDPI, vol. 12(5), pages 1-19, March.
    15. Ismail Shah & Hasnain Iftikhar & Sajid Ali & Depeng Wang, 2019. "Short-Term Electricity Demand Forecasting Using Components Estimation Technique," Energies, MDPI, vol. 12(13), pages 1-17, July.
    16. Yildiz, B. & Bilbao, J.I. & Sproul, A.B., 2017. "A review and analysis of regression and machine learning models on commercial building electricity load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1104-1122.
    17. Hussain, I. & Ali, S.M. & Khan, B. & Ullah, Z. & Mehmood, C.A. & Jawad, M. & Farid, U. & Haider, A., 2019. "Stochastic Wind Energy Management Model within smart grid framework: A joint Bi-directional Service Level Agreement (SLA) between smart grid and Wind Energy District Prosumers," Renewable Energy, Elsevier, vol. 134(C), pages 1017-1033.
    18. Tayab, Usman Bashir & Zia, Ali & Yang, Fuwen & Lu, Junwei & Kashif, Muhammad, 2020. "Short-term load forecasting for microgrid energy management system using hybrid HHO-FNN model with best-basis stationary wavelet packet transform," Energy, Elsevier, vol. 203(C).
    19. Abu-Shikhah, Nazih & Elkarmi, Fawwaz, 2011. "Medium-term electric load forecasting using singular value decomposition," Energy, Elsevier, vol. 36(7), pages 4259-4271.
    20. Ibrahim Salem Jahan & Vaclav Snasel & Stanislav Misak, 2020. "Intelligent Systems for Power Load Forecasting: A Study Review," Energies, MDPI, vol. 13(22), pages 1-12, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Warut Pannakkong & Thanyaporn Harncharnchai & Jirachai Buddhakulsomsiri, 2022. "Forecasting Daily Electricity Consumption in Thailand Using Regression, Artificial Neural Network, Support Vector Machine, and Hybrid Models," Energies, MDPI, vol. 15(9), pages 1-21, April.
    2. Zhou, Wenhao & Li, Hailin & Zhang, Zhiwei, 2022. "A novel seasonal fractional grey model for predicting electricity demand: A case study of Zhejiang in China," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 128-147.
    3. Khizer Mehmood & Naveed Ishtiaq Chaudhary & Zeshan Aslam Khan & Muhammad Asif Zahoor Raja & Khalid Mehmood Cheema & Ahmad H. Milyani, 2022. "Design of Aquila Optimization Heuristic for Identification of Control Autoregressive Systems," Mathematics, MDPI, vol. 10(10), pages 1-23, May.
    4. Jicheng Liu & Yu Yin, 2022. "Power Load Forecasting Considering Climate Factors Based on IPSO-Elman Method in China," Energies, MDPI, vol. 15(3), pages 1-23, February.
    5. Nazila Pourhaji & Mohammad Asadpour & Ali Ahmadian & Ali Elkamel, 2022. "The Investigation of Monthly/Seasonal Data Clustering Impact on Short-Term Electricity Price Forecasting Accuracy: Ontario Province Case Study," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
    6. Maksymilian Mądziel & Tiziana Campisi, 2023. "Energy Consumption of Electric Vehicles: Analysis of Selected Parameters Based on Created Database," Energies, MDPI, vol. 16(3), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
    2. Hammad Mahmoud A. & Jereb Borut & Rosi Bojan & Dragan Dejan, 2020. "Methods and Models for Electric Load Forecasting: A Comprehensive Review," Logistics, Supply Chain, Sustainability and Global Challenges, Sciendo, vol. 11(1), pages 51-76, February.
    3. Nahid Sultana & S. M. Zakir Hossain & Salma Hamad Almuhaini & Dilek Düştegör, 2022. "Bayesian Optimization Algorithm-Based Statistical and Machine Learning Approaches for Forecasting Short-Term Electricity Demand," Energies, MDPI, vol. 15(9), pages 1-26, May.
    4. Fanidhar Dewangan & Almoataz Y. Abdelaziz & Monalisa Biswal, 2023. "Load Forecasting Models in Smart Grid Using Smart Meter Information: A Review," Energies, MDPI, vol. 16(3), pages 1-55, January.
    5. Seok-Jun Bu & Sung-Bae Cho, 2020. "Time Series Forecasting with Multi-Headed Attention-Based Deep Learning for Residential Energy Consumption," Energies, MDPI, vol. 13(18), pages 1-16, September.
    6. Chaturvedi, Shobhit & Rajasekar, Elangovan & Natarajan, Sukumar & McCullen, Nick, 2022. "A comparative assessment of SARIMA, LSTM RNN and Fb Prophet models to forecast total and peak monthly energy demand for India," Energy Policy, Elsevier, vol. 168(C).
    7. Fatma Yaprakdal, 2022. "An Ensemble Deep-Learning-Based Model for Hour-Ahead Load Forecasting with a Feature Selection Approach: A Comparative Study with State-of-the-Art Methods," Energies, MDPI, vol. 16(1), pages 1-13, December.
    8. Alexandru Pîrjan & Simona-Vasilica Oprea & George Căruțașu & Dana-Mihaela Petroșanu & Adela Bâra & Cristina Coculescu, 2017. "Devising Hourly Forecasting Solutions Regarding Electricity Consumption in the Case of Commercial Center Type Consumers," Energies, MDPI, vol. 10(11), pages 1-36, October.
    9. Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
    10. Wang, Qiang & Jiang, Feng, 2019. "Integrating linear and nonlinear forecasting techniques based on grey theory and artificial intelligence to forecast shale gas monthly production in Pennsylvania and Texas of the United States," Energy, Elsevier, vol. 178(C), pages 781-803.
    11. Jee-Heon Kim & Nam-Chul Seong & Wonchang Choi, 2019. "Cooling Load Forecasting via Predictive Optimization of a Nonlinear Autoregressive Exogenous (NARX) Neural Network Model," Sustainability, MDPI, vol. 11(23), pages 1-13, November.
    12. Arash Moradzadeh & Sahar Zakeri & Maryam Shoaran & Behnam Mohammadi-Ivatloo & Fazel Mohammadi, 2020. "Short-Term Load Forecasting of Microgrid via Hybrid Support Vector Regression and Long Short-Term Memory Algorithms," Sustainability, MDPI, vol. 12(17), pages 1-17, August.
    13. Karodine Chreng & Han Soo Lee & Soklin Tuy, 2022. "A Hybrid Model for Electricity Demand Forecast Using Improved Ensemble Empirical Mode Decomposition and Recurrent Neural Networks with ERA5 Climate Variables," Energies, MDPI, vol. 15(19), pages 1-26, October.
    14. Hadjout, D. & Torres, J.F. & Troncoso, A. & Sebaa, A. & Martínez-Álvarez, F., 2022. "Electricity consumption forecasting based on ensemble deep learning with application to the Algerian market," Energy, Elsevier, vol. 243(C).
    15. Federico Divina & Aude Gilson & Francisco Goméz-Vela & Miguel García Torres & José F. Torres, 2018. "Stacking Ensemble Learning for Short-Term Electricity Consumption Forecasting," Energies, MDPI, vol. 11(4), pages 1-31, April.
    16. R. Rueda & M. P. Cuéllar & M. Molina-Solana & Y. Guo & M. C. Pegalajar, 2019. "Generalised Regression Hypothesis Induction for Energy Consumption Forecasting," Energies, MDPI, vol. 12(6), pages 1-22, March.
    17. Ng, Rong Wang & Begam, Kasim Mumtaj & Rajkumar, Rajprasad Kumar & Wong, Yee Wan & Chong, Lee Wai, 2021. "An improved self-organizing incremental neural network model for short-term time-series load prediction," Applied Energy, Elsevier, vol. 292(C).
    18. Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2020. "Multi-Sequence LSTM-RNN Deep Learning and Metaheuristics for Electric Load Forecasting," Energies, MDPI, vol. 13(2), pages 1-21, January.
    19. Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2019. "Single and Multi-Sequence Deep Learning Models for Short and Medium Term Electric Load Forecasting," Energies, MDPI, vol. 12(1), pages 1-21, January.
    20. O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5510-:d:628657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.