IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1437-d1053825.html
   My bibliography  Save this article

Energy Consumption of Electric Vehicles: Analysis of Selected Parameters Based on Created Database

Author

Listed:
  • Maksymilian Mądziel

    (Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszow, Poland)

  • Tiziana Campisi

    (Faculty of Engineering and Architecture, Kore University of Enna, Cittadella Universitaria, 94100 Enna, Italy)

Abstract

Electric vehicles in a short time will make up the majority of the fleet of vehicles used in general. This state of affairs will generate huge sets of data, which can be further investigated. The paper presents a methodology for the analysis of electric vehicle data, with particular emphasis on the energy consumption parameter. The prepared database contains data for 123 electric vehicles for analysis. Data analysis was carried out in a Python environment with the use of the dabl API library. Presentation of the results was made on the basis of data classification for continuous and categorical features vs. target parameters. Additionally, a heatmap Pearson correlation coefficient was performed to correlate the energy consumption parameter with the other parameters studied. Through the data classification for the studied dataset, it can be concluded that there is no correlation against energy consumption for the parameter charging speed; in contrast, for the parameters range and maximum velocity, a positive correlation can be observed. The negative correlation with the parameter energy consumption is for the parameter acceleration to 100 km/h. The methodology presented to assess data from electric vehicles can be scalable for another dataset to prepare data for creating machine learning models, for example.

Suggested Citation

  • Maksymilian Mądziel & Tiziana Campisi, 2023. "Energy Consumption of Electric Vehicles: Analysis of Selected Parameters Based on Created Database," Energies, MDPI, vol. 16(3), pages 1-18, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1437-:d:1053825
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1437/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1437/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrzej Ziółkowski & Paweł Fuć & Piotr Lijewski & Aleks Jagielski & Maciej Bednarek & Władysław Kusiak, 2022. "Analysis of Exhaust Emissions from Heavy-Duty Vehicles on Different Applications," Energies, MDPI, vol. 15(21), pages 1-21, October.
    2. Sharifzadeh, Mahdi & Sikinioti-Lock, Alexandra & Shah, Nilay, 2019. "Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 513-538.
    3. Guha Majumder, Madhumita & Dutta Gupta, Sangita & Paul, Justin, 2022. "Perceived usefulness of online customer reviews: A review mining approach using machine learning & exploratory data analysis," Journal of Business Research, Elsevier, vol. 150(C), pages 147-164.
    4. Hossam Fraihat & Amneh A. Almbaideen & Abdullah Al-Odienat & Bassam Al-Naami & Roberto De Fazio & Paolo Visconti, 2022. "Solar Radiation Forecasting by Pearson Correlation Using LSTM Neural Network and ANFIS Method: Application in the West-Central Jordan," Future Internet, MDPI, vol. 14(3), pages 1-24, March.
    5. Anastasios Tsakalidis & Konstantinos Gkoumas & Ferenc Pekár, 2020. "Digital Transformation Supporting Transport Decarbonisation: Technological Developments in EU-Funded Research and Innovation," Sustainability, MDPI, vol. 12(9), pages 1-13, May.
    6. Brand, Christian & Cluzel, Celine & Anable, Jillian, 2017. "Modeling the uptake of plug-in vehicles in a heterogeneous car market using a consumer segmentation approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 121-136.
    7. Abdullah Dik & Siddig Omer & Rabah Boukhanouf, 2022. "Electric Vehicles: V2G for Rapid, Safe, and Green EV Penetration," Energies, MDPI, vol. 15(3), pages 1-26, January.
    8. Zarazua de Rubens, Gerardo, 2019. "Who will buy electric vehicles after early adopters? Using machine learning to identify the electric vehicle mainstream market," Energy, Elsevier, vol. 172(C), pages 243-254.
    9. Jiali Yu & Peng Yang & Kai Zhang & Faping Wang & Lixin Miao, 2018. "Evaluating the Effect of Policies and the Development of Charging Infrastructure on Electric Vehicle Diffusion in China," Sustainability, MDPI, vol. 10(10), pages 1-25, September.
    10. Enjian Yao & Zhiqiang Yang & Yuanyuan Song & Ting Zuo, 2013. "Comparison of Electric Vehicle’s Energy Consumption Factors for Different Road Types," Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-7, December.
    11. Jiangang Hao & Tin Kam Ho, 2019. "Machine Learning Made Easy: A Review of Scikit-learn Package in Python Programming Language," Journal of Educational and Behavioral Statistics, , vol. 44(3), pages 348-361, June.
    12. Zhou, Wenji & Hagos, Dejene Assefa & Stikbakke, Sverre & Huang, Lizhen & Cheng, Xu & Onstein, Erling, 2022. "Assessment of the impacts of different policy instruments on achieving the deep decarbonization targets of island energy systems in Norway – The case of Hinnøya," Energy, Elsevier, vol. 246(C).
    13. Artur Jaworski & Maksymilian Mądziel & Hubert Kuszewski, 2022. "Sustainable Public Transport Strategies—Decomposition of the Bus Fleet and Its Influence on the Decrease in Greenhouse Gas Emissions," Energies, MDPI, vol. 15(6), pages 1-14, March.
    14. Hamza Mediouni & Amal Ezzouhri & Zakaria Charouh & Khadija El Harouri & Soumia El Hani & Mounir Ghogho, 2022. "Energy Consumption Prediction and Analysis for Electric Vehicles: A Hybrid Approach," Energies, MDPI, vol. 15(17), pages 1-17, September.
    15. Seiho Kim & Jaesik Lee & Chulung Lee, 2017. "Does Driving Range of Electric Vehicles Influence Electric Vehicle Adoption?," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    16. Christian Thiel & Andreea Julea & Beatriz Acosta Iborra & Nerea De Miguel Echevarria & Emanuela Peduzzi & Enrico Pisoni & Jonatan J. Gómez Vilchez & Jette Krause, 2019. "Assessing the Impacts of Electric Vehicle Recharging Infrastructure Deployment Efforts in the European Union," Energies, MDPI, vol. 12(12), pages 1-23, June.
    17. Umar Javed & Khalid Ijaz & Muhammad Jawad & Ejaz A. Ansari & Noman Shabbir & Lauri Kütt & Oleksandr Husev, 2021. "Exploratory Data Analysis Based Short-Term Electrical Load Forecasting: A Comprehensive Analysis," Energies, MDPI, vol. 14(17), pages 1-22, September.
    18. Zhwan M. Khalid & Subhi R.M Zeebaree, 2021. "Big Data Analysis for Data Visualization: A Review," International Journal of Science and Business, IJSAB International, vol. 5(2), pages 64-75.
    19. Koch, Nicolas & Ritter, Nolan & Rohlf, Alexander & Scarazzato, Francesco, 2022. "When is the electric vehicle market self-sustaining? Evidence from Norway," Energy Economics, Elsevier, vol. 110(C).
    20. Alessandra Bonoli & Sara Zanni & Francisco Serrano-Bernardo, 2021. "Sustainability in Building and Construction within the Framework of Circular Cities and European New Green Deal. The Contribution of Concrete Recycling," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcelo Bruno Capeletti & Bruno Knevitz Hammerschmitt & Leonardo Nogueira Fontoura da Silva & Nelson Knak Neto & Jordan Passinato Sausen & Carlos Henrique Barriquello & Alzenira da Rosa Abaide, 2024. "User Behavior in Fast Charging of Electric Vehicles: An Analysis of Parameters and Clustering," Energies, MDPI, vol. 17(19), pages 1-20, September.
    2. Khalil Bachiri & Ali Yahyaouy & Hamid Gualous & Maria Malek & Younes Bennani & Philippe Makany & Nicoleta Rogovschi, 2023. "Multi-Agent DDPG Based Electric Vehicles Charging Station Recommendation," Energies, MDPI, vol. 16(16), pages 1-17, August.
    3. Maksymilian Mądziel, 2023. "Vehicle Emission Models and Traffic Simulators: A Review," Energies, MDPI, vol. 16(9), pages 1-31, May.
    4. Ruoxi Pan & Yiping Liang & Yifei Li & Kai Zhou & Jiarui Miao, 2023. "Environmental and Health Benefits of Promoting New Energy Vehicles: A Case Study Based on Chongqing City," Sustainability, MDPI, vol. 15(12), pages 1-16, June.
    5. Maksymilian Mądziel, 2024. "Energy Modeling for Electric Vehicles Based on Real Driving Cycles: An Artificial Intelligence Approach for Microscale Analyses," Energies, MDPI, vol. 17(5), pages 1-22, February.
    6. Steffen Limmer & Johannes Varga & Günther Robert Raidl, 2023. "Large Neighborhood Search for Electric Vehicle Fleet Scheduling," Energies, MDPI, vol. 16(12), pages 1-14, June.
    7. Martin Weiss & Trey Winbush & Alexandra Newman & Eckard Helmers, 2024. "Energy Consumption of Electric Vehicles in Europe," Sustainability, MDPI, vol. 16(17), pages 1-26, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Wankmüller & Maximilian Kunovjanek & Robert Gennaro Sposato & Gerald Reiner, 2020. "Selecting E-Mobility Transport Solutions for Mountain Rescue Operations," Energies, MDPI, vol. 13(24), pages 1-19, December.
    2. Zimm, Caroline, 2021. "Improving the understanding of electric vehicle technology and policy diffusion across countries," Transport Policy, Elsevier, vol. 105(C), pages 54-66.
    3. Xiong, Siqin & Yuan, Yi & Yao, Jia & Bai, Bo & Ma, Xiaoming, 2023. "Exploring consumer preferences for electric vehicles based on the random coefficient logit model," Energy, Elsevier, vol. 263(PA).
    4. Bogdanov, Dmitrii & Breyer, Christian, 2024. "Role of smart charging of electric vehicles and vehicle-to-grid in integrated renewables-based energy systems on country level," Energy, Elsevier, vol. 301(C).
    5. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Abderahman Rejeb & Karim Rejeb & Suhaiza Zailani & Yasanur Kayikci & John G. Keogh, 2023. "Examining Knowledge Diffusion in the Circular Economy Domain: a Main Path Analysis," Circular Economy and Sustainability, Springer, vol. 3(1), pages 125-166, March.
    7. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    8. Norouzi, Mohammadali & Aghaei, Jamshid & Niknam, Taher & Alipour, Mohammadali & Pirouzi, Sasan & Lehtonen, Matti, 2023. "Risk-averse and flexi-intelligent scheduling of microgrids based on hybrid Boltzmann machines and cascade neural network forecasting," Applied Energy, Elsevier, vol. 348(C).
    9. Shahbeig, Hossein & Nosrati, Mohsen, 2020. "Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    10. Felix Hinnüber & Marek Szarucki & Katarzyna Szopik-Depczyńska, 2019. "The Effects of a First-Time Experience on the Evaluation of Battery Electric Vehicles by Potential Consumers," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
    11. Jacobus Nel & Roula Inglesi-Lotz, 2022. "Electric Vehicles Market and Policy Conditions: Identifying South African Policy ``Potholes"," Working Papers 202257, University of Pretoria, Department of Economics.
    12. Ehab Issa El-Sayed & Salah K. ElSayed & Mohammad Alsharef, 2024. "Data-Driven Approaches for State-of-Charge Estimation in Battery Electric Vehicles Using Machine and Deep Learning Techniques," Sustainability, MDPI, vol. 16(21), pages 1-21, October.
    13. Wang, Hua & Zhao, De & Meng, Qiang & Ong, Ghim Ping & Lee, Der-Horng, 2020. "Network-level energy consumption estimation for electric vehicles considering vehicle and user heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 30-46.
    14. Moradi, Masoud & Dass, Mayukh & Kumar, Piyush, 2023. "Differential effects of analytical versus emotional rhetorical style on review helpfulness," Journal of Business Research, Elsevier, vol. 154(C).
    15. Bi, Huibo & Shang, Wen-Long & Chen, Yanyan & Wang, Kezhi & Yu, Qing & Sui, Yi, 2021. "GIS aided sustainable urban road management with a unifying queueing and neural network model," Applied Energy, Elsevier, vol. 291(C).
    16. Marija Jović & Edvard Tijan & Doroteja Vidmar & Andreja Pucihar, 2022. "Factors of Digital Transformation in the Maritime Transport Sector," Sustainability, MDPI, vol. 14(15), pages 1-18, August.
    17. Muideen Adegoke & Alaka Hafiz & Saheed Ajayi & Razak Olu-Ajayi, 2022. "Application of Multilayer Extreme Learning Machine for Efficient Building Energy Prediction," Energies, MDPI, vol. 15(24), pages 1-21, December.
    18. Jianlong Wu & Zhongji Yang & Xiaobo Hu & Hongqi Wang & Jing Huang, 2018. "Exploring Driving Forces of Sustainable Development of China’s New Energy Vehicle Industry: An Analysis from the Perspective of an Innovation Ecosystem," Sustainability, MDPI, vol. 10(12), pages 1-24, December.
    19. Tan, Kang Miao & Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Mansor, Muhamad & Teh, Jiashen & Guerrero, Josep M., 2023. "Factors influencing global transportation electrification: Comparative analysis of electric and internal combustion engine vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    20. Artur Jaworski & Vasyl Mateichyk & Hubert Kuszewski & Maksymilian Mądziel & Paweł Woś & Bożena Babiarz & Mirosław Śmieszek & Sławomir Porada, 2023. "Towards Cleaner Cities: An Analysis of the Impact of Bus Fleet Decomposition on PM and NO X Emissions Reduction in Sustainable Public Transport," Energies, MDPI, vol. 16(19), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1437-:d:1053825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.