IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i5p1282-d146950.html
   My bibliography  Save this article

A Hybrid BA-ELM Model Based on Factor Analysis and Similar-Day Approach for Short-Term Load Forecasting

Author

Listed:
  • Wei Sun

    (Department of Business Administration, North China Electric Power University, Baoding 071000, China)

  • Chongchong Zhang

    (Department of Business Administration, North China Electric Power University, Baoding 071000, China)

Abstract

Accurate power-load forecasting for the safe and stable operation of a power system is of great significance. However, the random non-stationary electric-load time series which is affected by many factors hinders the improvement of prediction accuracy. In light of this, this paper innovatively combines factor analysis and similar-day thinking into a prediction model for short-term load forecasting. After factor analysis, the latent factors that affect load essentially are extracted from an original 22 influence factors. Then, considering the contribution rate of history load data, partial auto correlation function (PACF) is employed to further analyse the impact effect. In addition, ant colony clustering (ACC) is adopted to excavate the similar days that have common factors with the forecast day. Finally, an extreme learning machine (ELM), whose input weights and bias threshold are optimized by a bat algorithm (BA), hereafter referred as BA-ELM, is established to predict the electric load. A simulation experience using data deriving from Yangquan City shows its effectiveness and applicability, and the result demonstrates that the hybrid model can meet the needs of short-term electric load prediction.

Suggested Citation

  • Wei Sun & Chongchong Zhang, 2018. "A Hybrid BA-ELM Model Based on Factor Analysis and Similar-Day Approach for Short-Term Load Forecasting," Energies, MDPI, vol. 11(5), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1282-:d:146950
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/5/1282/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/5/1282/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chan-Uk Yeom & Keun-Chang Kwak, 2017. "Short-Term Electricity-Load Forecasting Using a TSK-Based Extreme Learning Machine with Knowledge Representation," Energies, MDPI, vol. 10(10), pages 1-18, October.
    2. Dongxiao Niu & Shuyu Dai, 2017. "A Short-Term Load Forecasting Model with a Modified Particle Swarm Optimization Algorithm and Least Squares Support Vector Machine Based on the Denoising Method of Empirical Mode Decomposition and Gre," Energies, MDPI, vol. 10(3), pages 1-20, March.
    3. Yu, Feng & Xu, Xiaozhong, 2014. "A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network," Applied Energy, Elsevier, vol. 134(C), pages 102-113.
    4. Luis Hernandez & Carlos Baladrón & Javier M. Aguiar & Belén Carro & Antonio J. Sanchez-Esguevillas & Jaime Lloret, 2013. "Short-Term Load Forecasting for Microgrids Based on Artificial Neural Networks," Energies, MDPI, vol. 6(3), pages 1-24, March.
    5. Bahrami, Saadat & Hooshmand, Rahmat-Allah & Parastegari, Moein, 2014. "Short term electric load forecasting by wavelet transform and grey model improved by PSO (particle swarm optimization) algorithm," Energy, Elsevier, vol. 72(C), pages 434-442.
    6. Yi Liang & Dongxiao Niu & Minquan Ye & Wei-Chiang Hong, 2016. "Correction: Liang, Y., et al. Short-Term Load Forecasting Based on Wavelet Transform and Least Squares Support Vector Machine Optimized by Improved Cuckoo Search. Energies 2016, 9 , 827," Energies, MDPI, vol. 9(12), pages 1-1, December.
    7. Yi Liang & Dongxiao Niu & Minquan Ye & Wei-Chiang Hong, 2016. "Short-Term Load Forecasting Based on Wavelet Transform and Least Squares Support Vector Machine Optimized by Improved Cuckoo Search," Energies, MDPI, vol. 9(10), pages 1-17, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seon Hyeog Kim & Gyul Lee & Gu-Young Kwon & Do-In Kim & Yong-June Shin, 2018. "Deep Learning Based on Multi-Decomposition for Short-Term Load Forecasting," Energies, MDPI, vol. 11(12), pages 1-17, December.
    2. Ning Li & Fuxing He & Wentao Ma, 2019. "Wind Power Prediction Based on Extreme Learning Machine with Kernel Mean p -Power Error Loss," Energies, MDPI, vol. 12(4), pages 1-19, February.
    3. Umar Javed & Khalid Ijaz & Muhammad Jawad & Ejaz A. Ansari & Noman Shabbir & Lauri Kütt & Oleksandr Husev, 2021. "Exploratory Data Analysis Based Short-Term Electrical Load Forecasting: A Comprehensive Analysis," Energies, MDPI, vol. 14(17), pages 1-22, September.
    4. Yajing Gao & Shixiao Guo & Jiafeng Ren & Zheng Zhao & Ali Ehsan & Yanan Zheng, 2018. "An Electric Bus Power Consumption Model and Optimization of Charging Scheduling Concerning Multi-External Factors," Energies, MDPI, vol. 11(8), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xing Zhang, 2018. "Short-Term Load Forecasting for Electric Bus Charging Stations Based on Fuzzy Clustering and Least Squares Support Vector Machine Optimized by Wolf Pack Algorithm," Energies, MDPI, vol. 11(6), pages 1-18, June.
    2. Yi Liang & Dongxiao Niu & Minquan Ye & Wei-Chiang Hong, 2016. "Short-Term Load Forecasting Based on Wavelet Transform and Least Squares Support Vector Machine Optimized by Improved Cuckoo Search," Energies, MDPI, vol. 9(10), pages 1-17, October.
    3. Jin-peng Liu & Chang-ling Li, 2017. "The Short-Term Power Load Forecasting Based on Sperm Whale Algorithm and Wavelet Least Square Support Vector Machine with DWT-IR for Feature Selection," Sustainability, MDPI, vol. 9(7), pages 1-20, July.
    4. Huiting Zheng & Jiabin Yuan & Long Chen, 2017. "Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation," Energies, MDPI, vol. 10(8), pages 1-20, August.
    5. Yancai Xiao & Ruolan Dai & Guangjian Zhang & Weijia Chen, 2017. "The Use of an Improved LSSVM and Joint Normalization on Temperature Prediction of Gearbox Output Shaft in DFWT," Energies, MDPI, vol. 10(11), pages 1-13, November.
    6. Fan, Guo-Feng & Yu, Meng & Dong, Song-Qiao & Yeh, Yi-Hsuan & Hong, Wei-Chiang, 2021. "Forecasting short-term electricity load using hybrid support vector regression with grey catastrophe and random forest modeling," Utilities Policy, Elsevier, vol. 73(C).
    7. Yuanyuan Zhou & Min Zhou & Qing Xia & Wei-Chiang Hong, 2019. "Construction of EMD-SVR-QGA Model for Electricity Consumption: Case of University Dormitory," Mathematics, MDPI, vol. 7(12), pages 1-23, December.
    8. Dongxiao Niu & Weibo Zhao & Si Li & Rongjun Chen, 2018. "Cost Forecasting of Substation Projects Based on Cuckoo Search Algorithm and Support Vector Machines," Sustainability, MDPI, vol. 10(1), pages 1-11, January.
    9. Yuqi Dong & Xuejiao Ma & Chenchen Ma & Jianzhou Wang, 2016. "Research and Application of a Hybrid Forecasting Model Based on Data Decomposition for Electrical Load Forecasting," Energies, MDPI, vol. 9(12), pages 1-30, December.
    10. Chengshi Tian & Yan Hao, 2018. "A Novel Nonlinear Combined Forecasting System for Short-Term Load Forecasting," Energies, MDPI, vol. 11(4), pages 1-34, March.
    11. He, Feifei & Zhou, Jianzhong & Feng, Zhong-kai & Liu, Guangbiao & Yang, Yuqi, 2019. "A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm," Applied Energy, Elsevier, vol. 237(C), pages 103-116.
    12. Yagang Zhang & Jingyun Yang & Kangcheng Wang & Yinding Wang, 2014. "Lorenz Wind Disturbance Model Based on Grey Generated Components," Energies, MDPI, vol. 7(11), pages 1-16, November.
    13. Yan Hong Chen & Wei-Chiang Hong & Wen Shen & Ning Ning Huang, 2016. "Electric Load Forecasting Based on a Least Squares Support Vector Machine with Fuzzy Time Series and Global Harmony Search Algorithm," Energies, MDPI, vol. 9(2), pages 1-13, January.
    14. Ibrahim Salem Jahan & Vaclav Snasel & Stanislav Misak, 2020. "Intelligent Systems for Power Load Forecasting: A Study Review," Energies, MDPI, vol. 13(22), pages 1-12, November.
    15. Yue-Gang Song & Yu-Long Zhou & Ren-Jie Han, 2018. "Neural networks for stock price prediction," Papers 1805.11317, arXiv.org.
    16. Renxi Gong & Xianglong Li, 2023. "A Short-Term Load Forecasting Model Based on Crisscross Grey Wolf Optimizer and Dual-Stage Attention Mechanism," Energies, MDPI, vol. 16(6), pages 1-24, March.
    17. Xiao, Liye & Shao, Wei & Liang, Tulu & Wang, Chen, 2016. "A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting," Applied Energy, Elsevier, vol. 167(C), pages 135-153.
    18. Zhang, Ning & Li, Zhiying & Zou, Xun & Quiring, Steven M., 2019. "Comparison of three short-term load forecast models in Southern California," Energy, Elsevier, vol. 189(C).
    19. Zhao, Jing & Yang, Zilan & Shi, Linyu & Liu, Dehan & Li, Haonan & Mi, Yumiao & Wang, Hongbin & Feng, Meili & Hutagaol, Timothy Joseph, 2024. "Photovoltaic capacity dynamic tracking model predictive control strategy of air-conditioning systems with consideration of flexible loads," Applied Energy, Elsevier, vol. 356(C).
    20. Ding, Song & Tao, Zui & Zhang, Huahan & Li, Yao, 2022. "Forecasting nuclear energy consumption in China and America: An optimized structure-adaptative grey model," Energy, Elsevier, vol. 239(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1282-:d:146950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.