Electricity consumption forecasting based on ensemble deep learning with application to the Algerian market
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.123060
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, H.Z. & Wang, G.B. & Li, G.Q. & Peng, J.C. & Liu, Y.T., 2016. "Deep belief network based deterministic and probabilistic wind speed forecasting approach," Applied Energy, Elsevier, vol. 182(C), pages 80-93.
- Deb, Chirag & Zhang, Fan & Yang, Junjing & Lee, Siew Eang & Shah, Kwok Wei, 2017. "A review on time series forecasting techniques for building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 902-924.
- Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2018. "Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches †," Energies, MDPI, vol. 11(7), pages 1-20, June.
- Viegas, Joaquim L. & Esteves, Paulo R. & Melício, R. & Mendes, V.M.F. & Vieira, Susana M., 2017. "Solutions for detection of non-technical losses in the electricity grid: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1256-1268.
- Kim, Tae-Young & Cho, Sung-Bae, 2019. "Predicting residential energy consumption using CNN-LSTM neural networks," Energy, Elsevier, vol. 182(C), pages 72-81.
- Federico Divina & Aude Gilson & Francisco Goméz-Vela & Miguel García Torres & José F. Torres, 2018. "Stacking Ensemble Learning for Short-Term Electricity Consumption Forecasting," Energies, MDPI, vol. 11(4), pages 1-31, April.
- Wang, Zheng-Xin & Li, Qin & Pei, Ling-Ling, 2018. "A seasonal GM(1,1) model for forecasting the electricity consumption of the primary economic sectors," Energy, Elsevier, vol. 154(C), pages 522-534.
- Francisco Martínez-Álvarez & Alicia Troncoso & Gualberto Asencio-Cortés & José C. Riquelme, 2015. "A Survey on Data Mining Techniques Applied to Electricity-Related Time Series Forecasting," Energies, MDPI, vol. 8(11), pages 1-32, November.
- Rallapalli, Srinivasa Rao & Ghosh, Sajal, 2012. "Forecasting monthly peak demand of electricity in India—A critique," Energy Policy, Elsevier, vol. 45(C), pages 516-520.
- Chen, Kunlong & Jiang, Jiuchun & Zheng, Fangdan & Chen, Kunjin, 2018. "A novel data-driven approach for residential electricity consumption prediction based on ensemble learning," Energy, Elsevier, vol. 150(C), pages 49-60.
- Cai, Mengmeng & Pipattanasomporn, Manisa & Rahman, Saifur, 2019. "Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques," Applied Energy, Elsevier, vol. 236(C), pages 1078-1088.
- Dedinec, Aleksandra & Filiposka, Sonja & Dedinec, Aleksandar & Kocarev, Ljupco, 2016. "Deep belief network based electricity load forecasting: An analysis of Macedonian case," Energy, Elsevier, vol. 115(P3), pages 1688-1700.
- Óscar Trull & J. Carlos García-Díaz & Alicia Troncoso, 2019. "Application of Discrete-Interval Moving Seasonalities to Spanish Electricity Demand Forecasting during Easter," Energies, MDPI, vol. 12(6), pages 1-16, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li, Shoujiang & Wang, Jianzhou & Zhang, Hui & Liang, Yong, 2024. "Enhancing hourly electricity forecasting using fuzzy cognitive maps with sample entropy," Energy, Elsevier, vol. 298(C).
- Ramos, Paulo Vitor B. & Villela, Saulo Moraes & Silva, Walquiria N. & Dias, Bruno H., 2023. "Residential energy consumption forecasting using deep learning models," Applied Energy, Elsevier, vol. 350(C).
- Jin, Haowei & Guo, Jue & Tang, Lei & Du, Pei, 2024. "Long-term electricity demand forecasting under low-carbon energy transition: Based on the bidirectional feedback between power demand and generation mix," Energy, Elsevier, vol. 286(C).
- Segundo Rojas-Flores & Magaly De La Cruz-Noriega & Luis Cabanillas-Chirinos & Santiago M. Benites & Renny Nazario-Naveda & Daniel Delfín-Narciso & Moisés Gallozzo-Cardenas & Félix Diaz & Emzon Murga-T, 2023. "Green Energy Generated in Single-Chamber Microbial Fuel Cells Using Tomato Waste," Sustainability, MDPI, vol. 15(13), pages 1-12, July.
- Bibi Ibrahim & Luis Rabelo & Alfonso T. Sarmiento & Edgar Gutierrez-Franco, 2023. "A Holistic Approach to Power Systems Using Innovative Machine Learning and System Dynamics," Energies, MDPI, vol. 16(13), pages 1-29, July.
- Gonçalves, Rui & Ribeiro, Vitor Miguel & Pereira, Fernando Lobo, 2023. "Variable Split Convolutional Attention: A novel Deep Learning model applied to the household electric power consumption," Energy, Elsevier, vol. 274(C).
- Lorena Espina-Romero & José Gregorio Noroño Sánchez & Humberto Gutiérrez Hurtado & Helga Dworaczek Conde & Yessenia Solier Castro & Luz Emérita Cervera Cajo & Jose Rio Corredoira, 2023. "Which Industrial Sectors Are Affected by Artificial Intelligence? A Bibliometric Analysis of Trends and Perspectives," Sustainability, MDPI, vol. 15(16), pages 1-18, August.
- Kesriklioğlu, Esma & Oktay, Erkan & Karaaslan, Abdulkerim, 2023. "Predicting total household energy expenditures using ensemble learning methods," Energy, Elsevier, vol. 276(C).
- Roozbeh Sadeghian Broujeny & Safa Ben Ayed & Mouadh Matalah, 2023. "Energy Consumption Forecasting in a University Office by Artificial Intelligence Techniques: An Analysis of the Exogenous Data Effect on the Modeling," Energies, MDPI, vol. 16(10), pages 1-21, May.
- Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
- Salma Hamad Almuhaini & Nahid Sultana, 2023. "Forecasting Long-Term Electricity Consumption in Saudi Arabia Based on Statistical and Machine Learning Algorithms to Enhance Electric Power Supply Management," Energies, MDPI, vol. 16(4), pages 1-28, February.
- Ejigu Tefera Habtemariam & Kula Kekeba & María Martínez-Ballesteros & Francisco Martínez-Álvarez, 2023. "A Bayesian Optimization-Based LSTM Model for Wind Power Forecasting in the Adama District, Ethiopia," Energies, MDPI, vol. 16(5), pages 1-22, February.
- Du, Pei & Guo, Ju'e & Sun, Shaolong & Wang, Shouyang & Wu, Jing, 2022. "A novel two-stage seasonal grey model for residential electricity consumption forecasting," Energy, Elsevier, vol. 258(C).
- Eren, Yavuz & Küçükdemiral, İbrahim, 2024. "A comprehensive review on deep learning approaches for short-term load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Wu, Han & Liang, Yan & Heng, Jiani, 2023. "Pulse-diagnosis-inspired multi-feature extraction deep network for short-term electricity load forecasting," Applied Energy, Elsevier, vol. 339(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Federico Divina & Miguel García Torres & Francisco A. Goméz Vela & José Luis Vázquez Noguera, 2019. "A Comparative Study of Time Series Forecasting Methods for Short Term Electric Energy Consumption Prediction in Smart Buildings," Energies, MDPI, vol. 12(10), pages 1-23, May.
- Jason Runge & Radu Zmeureanu, 2021. "A Review of Deep Learning Techniques for Forecasting Energy Use in Buildings," Energies, MDPI, vol. 14(3), pages 1-26, January.
- Zang, Haixiang & Xu, Ruiqi & Cheng, Lilin & Ding, Tao & Liu, Ling & Wei, Zhinong & Sun, Guoqiang, 2021. "Residential load forecasting based on LSTM fusing self-attention mechanism with pooling," Energy, Elsevier, vol. 229(C).
- Chaturvedi, Shobhit & Rajasekar, Elangovan & Natarajan, Sukumar & McCullen, Nick, 2022. "A comparative assessment of SARIMA, LSTM RNN and Fb Prophet models to forecast total and peak monthly energy demand for India," Energy Policy, Elsevier, vol. 168(C).
- Ruijin Zhu & Weilin Guo & Xuejiao Gong, 2019. "Short-Term Load Forecasting for CCHP Systems Considering the Correlation between Heating, Gas and Electrical Loads Based on Deep Learning," Energies, MDPI, vol. 12(17), pages 1-18, August.
- Seok-Jun Bu & Sung-Bae Cho, 2020. "Time Series Forecasting with Multi-Headed Attention-Based Deep Learning for Residential Energy Consumption," Energies, MDPI, vol. 13(18), pages 1-16, September.
- Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
- Somu, Nivethitha & Raman M R, Gauthama & Ramamritham, Krithi, 2021. "A deep learning framework for building energy consumption forecast," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
- Bingjie Jin & Guihua Zeng & Zhilin Lu & Hongqiao Peng & Shuxin Luo & Xinhe Yang & Haojun Zhu & Mingbo Liu, 2022. "Hybrid LSTM–BPNN-to-BPNN Model Considering Multi-Source Information for Forecasting Medium- and Long-Term Electricity Peak Load," Energies, MDPI, vol. 15(20), pages 1-20, October.
- Zhang, Meng & Guo, Huan & Sun, Ming & Liu, Sifeng & Forrest, Jeffrey, 2022. "A novel flexible grey multivariable model and its application in forecasting energy consumption in China," Energy, Elsevier, vol. 239(PE).
- Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
- Hyunsoo Kim & Jiseok Jeong & Changwan Kim, 2022. "Daily Peak-Electricity-Demand Forecasting Based on Residual Long Short-Term Network," Mathematics, MDPI, vol. 10(23), pages 1-17, November.
- Guillaume Guerard & Hugo Pousseur & Ihab Taleb, 2021. "Isolated Areas Consumption Short-Term Forecasting Method," Energies, MDPI, vol. 14(23), pages 1-23, November.
- Federico Divina & Aude Gilson & Francisco Goméz-Vela & Miguel García Torres & José F. Torres, 2018. "Stacking Ensemble Learning for Short-Term Electricity Consumption Forecasting," Energies, MDPI, vol. 11(4), pages 1-31, April.
- Gonçalves, Rui & Ribeiro, Vitor Miguel & Pereira, Fernando Lobo, 2023. "Variable Split Convolutional Attention: A novel Deep Learning model applied to the household electric power consumption," Energy, Elsevier, vol. 274(C).
- Ng, Rong Wang & Begam, Kasim Mumtaj & Rajkumar, Rajprasad Kumar & Wong, Yee Wan & Chong, Lee Wai, 2021. "An improved self-organizing incremental neural network model for short-term time-series load prediction," Applied Energy, Elsevier, vol. 292(C).
- Thomas Steens & Jan-Simon Telle & Benedikt Hanke & Karsten von Maydell & Carsten Agert & Gian-Luca Di Modica & Bernd Engel & Matthias Grottke, 2021. "A Forecast-Based Load Management Approach for Commercial Buildings Demonstrated on an Integration of BEV," Energies, MDPI, vol. 14(12), pages 1-25, June.
- de Oliveira Ventura, Lucas & Melo, Joel D. & Padilha-Feltrin, Antonio & Fernández-Gutiérrez, Juan Pablo & Sánchez Zuleta, Carmen C. & Piedrahita Escobar, Carlos César, 2020. "A new way for comparing solutions to non-technical electricity losses in South America," Utilities Policy, Elsevier, vol. 67(C).
- Liu, Gang & Wang, Kun & Hao, Xiaochen & Zhang, Zhipeng & Zhao, Yantao & Xu, Qingquan, 2022. "SA-LSTMs: A new advance prediction method of energy consumption in cement raw materials grinding system," Energy, Elsevier, vol. 241(C).
- Di Natale, L. & Svetozarevic, B. & Heer, P. & Jones, C.N., 2022. "Physically Consistent Neural Networks for building thermal modeling: Theory and analysis," Applied Energy, Elsevier, vol. 325(C).
More about this item
Keywords
Time series; Forecasting; Deep learning; Ensemble learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:243:y:2022:i:c:s0360544221033090. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.