Medium-term electric load forecasting using singular value decomposition
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2011.04.017
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Amarawickrama, Himanshu A. & Hunt, Lester C., 2008.
"Electricity demand for Sri Lanka: A time series analysis,"
Energy, Elsevier, vol. 33(5), pages 724-739.
- Himanshu A. Amarawickrama & Lester C Hunt, 2007. "Electricity Demand for Sri Lanka: A Time Series Analysis," Surrey Energy Economics Centre (SEEC), School of Economics Discussion Papers (SEEDS) 118, Surrey Energy Economics Centre (SEEC), School of Economics, University of Surrey.
- Magnano, L. & Boland, J.W., 2007. "Generation of synthetic sequences of electricity demand: Application in South Australia," Energy, Elsevier, vol. 32(11), pages 2230-2243.
- Mirasgedis, S. & Sarafidis, Y. & Georgopoulou, E. & Lalas, D.P. & Moschovits, M. & Karagiannis, F. & Papakonstantinou, D., 2006. "Models for mid-term electricity demand forecasting incorporating weather influences," Energy, Elsevier, vol. 31(2), pages 208-227.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Guo‐Feng Fan & Yan‐Hui Guo & Jia‐Mei Zheng & Wei‐Chiang Hong, 2020. "A generalized regression model based on hybrid empirical mode decomposition and support vector regression with back‐propagation neural network for mid‐short‐term load forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 737-756, August.
- Hernández, Luis & Baladrón, Carlos & Aguiar, Javier M. & Carro, Belén & Sánchez-Esguevillas, Antonio & Lloret, Jaime, 2014. "Artificial neural networks for short-term load forecasting in microgrids environment," Energy, Elsevier, vol. 75(C), pages 252-264.
- Alessandro Bosisio & Matteo Moncecchi & Andrea Morotti & Marco Merlo, 2021. "Machine Learning and GIS Approach for Electrical Load Assessment to Increase Distribution Networks Resilience," Energies, MDPI, vol. 14(14), pages 1-23, July.
- Tziolis, Georgios & Spanias, Chrysovalantis & Theodoride, Maria & Theocharides, Spyros & Lopez-Lorente, Javier & Livera, Andreas & Makrides, George & Georghiou, George E., 2023. "Short-term electric net load forecasting for solar-integrated distribution systems based on Bayesian neural networks and statistical post-processing," Energy, Elsevier, vol. 271(C).
- Mesbaholdin Salami & Farzad Movahedi Sobhani & Mohammad Sadegh Ghazizadeh, 2018. "Short-Term Forecasting of Electricity Supply and Demand by Using the Wavelet-PSO-NNs-SO Technique for Searching in Big Data of Iran’s Electricity Market," Data, MDPI, vol. 3(4), pages 1-26, October.
- Talaat, M. & Farahat, M.A. & Mansour, Noura & Hatata, A.Y., 2020. "Load forecasting based on grasshopper optimization and a multilayer feed-forward neural network using regressive approach," Energy, Elsevier, vol. 196(C).
- Janina POPEANGA, 2015. "Data Mining Smart Energy Time Series," Database Systems Journal, Academy of Economic Studies - Bucharest, Romania, vol. 6(1), pages 14-22, July.
- Hammad Mahmoud A. & Jereb Borut & Rosi Bojan & Dragan Dejan, 2020. "Methods and Models for Electric Load Forecasting: A Comprehensive Review," Logistics, Supply Chain, Sustainability and Global Challenges, Sciendo, vol. 11(1), pages 51-76, February.
- Xing Zhang & Chongchong Zhang & Zhuoqun Wei, 2019. "Carbon Price Forecasting Based on Multi-Resolution Singular Value Decomposition and Extreme Learning Machine Optimized by the Moth–Flame Optimization Algorithm Considering Energy and Economic Factors," Energies, MDPI, vol. 12(22), pages 1-23, November.
- OrtizBeviá, M.J. & RuizdeElvira, A. & Alvarez-García, F.J., 2014. "The influence of meteorological variability on the mid-term evolution of the electricity load," Energy, Elsevier, vol. 76(C), pages 850-856.
- Umar Javed & Khalid Ijaz & Muhammad Jawad & Ejaz A. Ansari & Noman Shabbir & Lauri Kütt & Oleksandr Husev, 2021. "Exploratory Data Analysis Based Short-Term Electrical Load Forecasting: A Comprehensive Analysis," Energies, MDPI, vol. 14(17), pages 1-22, September.
- Shao, Zhen & Chao, Fu & Yang, Shan-Lin & Zhou, Kai-Le, 2017. "A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 123-136.
- Hu, Zhongyi & Bao, Yukun & Chiong, Raymond & Xiong, Tao, 2015. "Mid-term interval load forecasting using multi-output support vector regression with a memetic algorithm for feature selection," Energy, Elsevier, vol. 84(C), pages 419-431.
- Dadkhah, Mojtaba & Jahangoshai Rezaee, Mustafa & Zare Chavoshi, Ahmad, 2018. "Short-term power output forecasting of hourly operation in power plant based on climate factors and effects of wind direction and wind speed," Energy, Elsevier, vol. 148(C), pages 775-788.
- Fanidhar Dewangan & Almoataz Y. Abdelaziz & Monalisa Biswal, 2023. "Load Forecasting Models in Smart Grid Using Smart Meter Information: A Review," Energies, MDPI, vol. 16(3), pages 1-55, January.
- Kazemzadeh, Mohammad-Rasool & Amjadian, Ali & Amraee, Turaj, 2020. "A hybrid data mining driven algorithm for long term electric peak load and energy demand forecasting," Energy, Elsevier, vol. 204(C).
- Bashiri Behmiri, Niaz & Fezzi, Carlo & Ravazzolo, Francesco, 2023. "Incorporating air temperature into mid-term electricity load forecasting models using time-series regressions and neural networks," Energy, Elsevier, vol. 278(C).
- Sun, Wei & Zhang, Chongchong, 2018. "Analysis and forecasting of the carbon price using multi—resolution singular value decomposition and extreme learning machine optimized by adaptive whale optimization algorithm," Applied Energy, Elsevier, vol. 231(C), pages 1354-1371.
- Jun-Lin Lin & Yiqing Zhang & Kunhuang Zhu & Binbin Chen & Feng Zhang, 2020. "Asymmetric Loss Functions for Contract Capacity Optimization," Energies, MDPI, vol. 13(12), pages 1-13, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Shuai & Yu, Lean & Tang, Ling & Wang, Shouyang, 2011. "A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China," Energy, Elsevier, vol. 36(11), pages 6542-6554.
- Cinar, Didem & Kayakutlu, Gulgun & Daim, Tugrul, 2010. "Development of future energy scenarios with intelligent algorithms: Case of hydro in Turkey," Energy, Elsevier, vol. 35(4), pages 1724-1729.
- Pielow, Amy & Sioshansi, Ramteen & Roberts, Matthew C., 2012. "Modeling short-run electricity demand with long-term growth rates and consumer price elasticity in commercial and industrial sectors," Energy, Elsevier, vol. 46(1), pages 533-540.
- Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio & Minea, Alina A., 2010. "Analysis and forecasting of nonresidential electricity consumption in Romania," Applied Energy, Elsevier, vol. 87(11), pages 3584-3590, November.
- Shao, Zhen & Chao, Fu & Yang, Shan-Lin & Zhou, Kai-Le, 2017. "A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 123-136.
- McLoughlin, Fintan & Duffy, Aidan & Conlon, Michael, 2013. "Evaluation of time series techniques to characterise domestic electricity demand," Energy, Elsevier, vol. 50(C), pages 120-130.
- Tanrisever, Fehmi & Derinkuyu, Kursad & Heeren, Michael, 2013. "Forecasting electricity infeed for distribution system networks: An analysis of the Dutch case," Energy, Elsevier, vol. 58(C), pages 247-257.
- Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio, 2009. "Electricity consumption forecasting in Italy using linear regression models," Energy, Elsevier, vol. 34(9), pages 1413-1421.
- Salisu, Afees A. & Ayinde, Taofeek O., 2016. "Modeling energy demand: Some emerging issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1470-1480.
- Wang, Jianzhou & Zhu, Wenjin & Zhang, Wenyu & Sun, Donghuai, 2009. "A trend fixed on firstly and seasonal adjustment model combined with the [epsilon]-SVR for short-term forecasting of electricity demand," Energy Policy, Elsevier, vol. 37(11), pages 4901-4909, November.
- Höltinger, Stefan & Mikovits, Christian & Schmidt, Johannes & Baumgartner, Johann & Arheimer, Berit & Lindström, Göran & Wetterlund, Elisabeth, 2019. "The impact of climatic extreme events on the feasibility of fully renewable power systems: A case study for Sweden," Energy, Elsevier, vol. 178(C), pages 695-713.
- Taghizadeh-Hesary, Farhad & Rasoulinezhad, Ehsan & Shahbaz, Muhammad & Vinh Vo, Xuan, 2021. "How energy transition and power consumption are related in Asian economies with different income levels?," Energy, Elsevier, vol. 237(C).
- Lee Lian Ivy-Yap & Hussain Ali Bekhet, 2015. "Examining the Feedback Response of Residential Electricity Consumption towards Changes in its Determinants: Evidence from Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 5(3), pages 772-781.
- Bernstein, Ronald & Madlener, Reinhard, 2015.
"Short- and long-run electricity demand elasticities at the subsectoral level: A cointegration analysis for German manufacturing industries,"
Energy Economics, Elsevier, vol. 48(C), pages 178-187.
- Bernstein, Ronald & Madlener, Reinhard, 2010. "Short- and Long-Run Electricity Demand Elasticities at the Subsectoral Level: A Cointegration Analysis for German Manufacturing Industries," FCN Working Papers 19/2010, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
- Wei Sun & Yujun He & Hong Chang, 2015. "Forecasting Fossil Fuel Energy Consumption for Power Generation Using QHSA-Based LSSVM Model," Energies, MDPI, vol. 8(2), pages 1-21, January.
- Yau, Y.H. & Pean, H.L., 2011. "The climate change impact on air conditioner system and reliability in Malaysia—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4939-4949.
- Dilaver, Zafer & Hunt, Lester C, 2011.
"Modelling and forecasting Turkish residential electricity demand,"
Energy Policy, Elsevier, vol. 39(6), pages 3117-3127, June.
- Zafer Dilaver & Lester C Hunt, 2010. "Modelling and Forecasting Turkish Residential Electricity Demand," Surrey Energy Economics Centre (SEEC), School of Economics Discussion Papers (SEEDS) 131, Surrey Energy Economics Centre (SEEC), School of Economics, University of Surrey.
- Santágata, Daniela M. & Castesana, Paula & Rössler, Cristina E. & Gómez, Darío R., 2017. "Extreme temperature events affecting the electricity distribution system of the metropolitan area of Buenos Aires (1971–2013)," Energy Policy, Elsevier, vol. 106(C), pages 404-414.
- Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Dilaver, Zafer & Hunt, Lester C., 2011.
"Turkish aggregate electricity demand: An outlook to 2020,"
Energy, Elsevier, vol. 36(11), pages 6686-6696.
- Zafer Dilaver & Lester C Hunt, 2011. "Turkish Aggregate Electricity Demand: An Outlook to 2020," Surrey Energy Economics Centre (SEEC), School of Economics Discussion Papers (SEEDS) 132, Surrey Energy Economics Centre (SEEC), School of Economics, University of Surrey.
More about this item
Keywords
Medium-term load forecasting; Electrical peak load; Polynomial regression; Singular value decomposition; Time series;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:7:p:4259-4271. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.