IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i17p7076-d406243.html
   My bibliography  Save this article

Short-Term Load Forecasting of Microgrid via Hybrid Support Vector Regression and Long Short-Term Memory Algorithms

Author

Listed:
  • Arash Moradzadeh

    (Faculty of Electrical and Computer Engineering, University of Tabriz, 5166616471 Tabriz, Iran)

  • Sahar Zakeri

    (Faculty of Electrical and Computer Engineering, University of Tabriz, 5166616471 Tabriz, Iran)

  • Maryam Shoaran

    (Faculty of Electrical and Computer Engineering, University of Tabriz, 5166616471 Tabriz, Iran)

  • Behnam Mohammadi-Ivatloo

    (Faculty of Electrical and Computer Engineering, University of Tabriz, 5166616471 Tabriz, Iran
    Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam)

  • Fazel Mohammadi

    (Department of Electrical and Computer Engineering, University of Windsor, Windsor, ON N9B 1K3, Canada)

Abstract

Short-Term Load Forecasting (STLF) is the most appropriate type of forecasting for both electricity consumers and generators. In this paper, STLF in a Microgrid (MG) is performed via the hybrid applications of machine learning. The proposed model is a modified Support Vector Regression (SVR) and Long Short-Term Memory (LSTM) called SVR-LSTM. In order to forecast the load, the proposed method is applied to the data related to a rural MG in Africa. Factors influencing the MG load, such as various household types and commercial entities, are selected as input variables and load profiles as target variables. Identifying the behavioral patterns of input variables as well as modeling their behavior in short-term periods of time are the major capabilities of the hybrid SVR-LSTM model. To present the efficiency of the suggested method, the conventional SVR and LSTM models are also applied to the used data. The results of the load forecasts by each network are evaluated using various statistical performance metrics. The obtained results show that the SVR-LSTM model with the highest correlation coefficient, i.e., 0.9901, is able to provide better results than SVR and LSTM, which have the values of 0.9770 and 0.9809, respectively. Finally, the results are compared with the results of other studies in this field, which continued to emphasize the superiority of the SVR-LSTM model.

Suggested Citation

  • Arash Moradzadeh & Sahar Zakeri & Maryam Shoaran & Behnam Mohammadi-Ivatloo & Fazel Mohammadi, 2020. "Short-Term Load Forecasting of Microgrid via Hybrid Support Vector Regression and Long Short-Term Memory Algorithms," Sustainability, MDPI, vol. 12(17), pages 1-17, August.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:17:p:7076-:d:406243
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/17/7076/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/17/7076/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zheng, Zhuang & Chen, Hainan & Luo, Xiaowei, 2019. "A Kalman filter-based bottom-up approach for household short-term load forecast," Applied Energy, Elsevier, vol. 250(C), pages 882-894.
    2. Yongli Wang & Yujing Huang & Yudong Wang & Fang Li & Yuanyuan Zhang & Chunzheng Tian, 2018. "Operation Optimization in a Smart Micro-Grid in the Presence of Distributed Generation and Demand Response," Sustainability, MDPI, vol. 10(3), pages 1-25, March.
    3. Che, JinXing & Wang, JianZhou, 2014. "Short-term load forecasting using a kernel-based support vector regression combination model," Applied Energy, Elsevier, vol. 132(C), pages 602-609.
    4. Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2018. "Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches †," Energies, MDPI, vol. 11(7), pages 1-20, June.
    5. Jin-peng Liu & Chang-ling Li, 2017. "The Short-Term Power Load Forecasting Based on Sperm Whale Algorithm and Wavelet Least Square Support Vector Machine with DWT-IR for Feature Selection," Sustainability, MDPI, vol. 9(7), pages 1-20, July.
    6. Eunjeong Choi & Soohwan Cho & Dong Keun Kim, 2020. "Power Demand Forecasting using Long Short-Term Memory (LSTM) Deep-Learning Model for Monitoring Energy Sustainability," Sustainability, MDPI, vol. 12(3), pages 1-14, February.
    7. Wen, Lulu & Zhou, Kaile & Yang, Shanlin & Lu, Xinhui, 2019. "Optimal load dispatch of community microgrid with deep learning based solar power and load forecasting," Energy, Elsevier, vol. 171(C), pages 1053-1065.
    8. Fatma Yaprakdal & M. Berkay Yılmaz & Mustafa Baysal & Amjad Anvari-Moghaddam, 2020. "A Deep Neural Network-Assisted Approach to Enhance Short-Term Optimal Operational Scheduling of a Microgrid," Sustainability, MDPI, vol. 12(4), pages 1-27, February.
    9. Xiaomin Wu & Weihua Cao & Dianhong Wang & Min Ding, 2019. "A Multi-Objective Optimization Dispatch Method for Microgrid Energy Management Considering the Power Loss of Converters," Energies, MDPI, vol. 12(11), pages 1-19, June.
    10. Rodríguez, Fermín & Florez-Tapia, Ane M. & Fontán, Luis & Galarza, Ainhoa, 2020. "Very short-term wind power density forecasting through artificial neural networks for microgrid control," Renewable Energy, Elsevier, vol. 145(C), pages 1517-1527.
    11. Tayab, Usman Bashir & Zia, Ali & Yang, Fuwen & Lu, Junwei & Kashif, Muhammad, 2020. "Short-term load forecasting for microgrid energy management system using hybrid HHO-FNN model with best-basis stationary wavelet packet transform," Energy, Elsevier, vol. 203(C).
    12. Fazel Mohammadi & Gholam-Abbas Nazri & Mehrdad Saif, 2019. "A Bidirectional Power Charging Control Strategy for Plug-in Hybrid Electric Vehicles," Sustainability, MDPI, vol. 11(16), pages 1-24, August.
    13. Arash Moradzadeh & Omid Sadeghian & Kazem Pourhossein & Behnam Mohammadi-Ivatloo & Amjad Anvari-Moghaddam, 2020. "Improving Residential Load Disaggregation for Sustainable Development of Energy via Principal Component Analysis," Sustainability, MDPI, vol. 12(8), pages 1-14, April.
    14. Barman, Mayur & Dev Choudhury, N.B. & Sutradhar, Suman, 2018. "A regional hybrid GOA-SVM model based on similar day approach for short-term load forecasting in Assam, India," Energy, Elsevier, vol. 145(C), pages 710-720.
    15. Afrasiabi, Mousa & Mohammadi, Mohammad & Rastegar, Mohammad & Kargarian, Amin, 2019. "Multi-agent microgrid energy management based on deep learning forecaster," Energy, Elsevier, vol. 186(C).
    16. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "Photovoltaic power forecasting based LSTM-Convolutional Network," Energy, Elsevier, vol. 189(C).
    17. Barman, Mayur & Dev Choudhury, Nalin Behari, 2019. "Season specific approach for short-term load forecasting based on hybrid FA-SVM and similarity concept," Energy, Elsevier, vol. 174(C), pages 886-896.
    18. Omid Sadeghian & Arash Moradzadeh & Behnam Mohammadi-Ivatloo & Mehdi Abapour & Fausto Pedro Garcia Marquez, 2020. "Generation Units Maintenance in Combined Heat and Power Integrated Systems Using the Mixed Integer Quadratic Programming Approach," Energies, MDPI, vol. 13(11), pages 1-25, June.
    19. Jong-Chan Kim & Jun-Ho Huh & Jae-Sub Ko, 2019. "Improvement of MPPT Control Performance Using Fuzzy Control and VGPI in the PV System for Micro Grid," Sustainability, MDPI, vol. 11(21), pages 1-27, October.
    20. Vinny Motjoadi & Pitshou N. Bokoro & Moses O. Onibonoje, 2020. "A Review of Microgrid-Based Approach to Rural Electrification in South Africa: Architecture and Policy Framework," Energies, MDPI, vol. 13(9), pages 1-22, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hsin-Wei Chiu & Le-Ren Chang-Chien & Chin-Chung Wu, 2021. "Construction of a Frequency Compliant Unit Commitment Framework Using an Ensemble Learning Technique," Energies, MDPI, vol. 14(2), pages 1-19, January.
    2. Mehmood, Faiza & Ghani, Muhammad Usman & Ghafoor, Hina & Shahzadi, Rehab & Asim, Muhammad Nabeel & Mahmood, Waqar, 2022. "EGD-SNet: A computational search engine for predicting an end-to-end machine learning pipeline for Energy Generation & Demand Forecasting," Applied Energy, Elsevier, vol. 324(C).
    3. Dana-Mihaela Petroșanu & Alexandru Pîrjan, 2020. "Electricity Consumption Forecasting Based on a Bidirectional Long-Short-Term Memory Artificial Neural Network," Sustainability, MDPI, vol. 13(1), pages 1-31, December.
    4. Massidda, Luca & Marrocu, Marino, 2023. "Total and thermal load forecasting in residential communities through probabilistic methods and causal machine learning," Applied Energy, Elsevier, vol. 351(C).
    5. Hernandez-Matheus, Alejandro & Löschenbrand, Markus & Berg, Kjersti & Fuchs, Ida & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Sumper, Andreas, 2022. "A systematic review of machine learning techniques related to local energy communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    6. Jong Ju Kim & June Ho Park, 2021. "A Novel Structure of a Power System Stabilizer for Microgrids," Energies, MDPI, vol. 14(4), pages 1-33, February.
    7. Thomas Price & Gordon Parker & Gail Vaucher & Robert Jane & Morris Berman, 2022. "Microgrid Energy Management during High-Stress Operation," Energies, MDPI, vol. 15(18), pages 1-11, September.
    8. Adnan Yousaf & Rao Muhammad Asif & Mustafa Shakir & Ateeq Ur Rehman & Mohmmed S. Adrees, 2021. "An Improved Residential Electricity Load Forecasting Using a Machine-Learning-Based Feature Selection Approach and a Proposed Integration Strategy," Sustainability, MDPI, vol. 13(11), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tayab, Usman Bashir & Zia, Ali & Yang, Fuwen & Lu, Junwei & Kashif, Muhammad, 2020. "Short-term load forecasting for microgrid energy management system using hybrid HHO-FNN model with best-basis stationary wavelet packet transform," Energy, Elsevier, vol. 203(C).
    2. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    3. Zang, Haixiang & Xu, Ruiqi & Cheng, Lilin & Ding, Tao & Liu, Ling & Wei, Zhinong & Sun, Guoqiang, 2021. "Residential load forecasting based on LSTM fusing self-attention mechanism with pooling," Energy, Elsevier, vol. 229(C).
    4. Dana-Mihaela Petroșanu & Alexandru Pîrjan, 2020. "Electricity Consumption Forecasting Based on a Bidirectional Long-Short-Term Memory Artificial Neural Network," Sustainability, MDPI, vol. 13(1), pages 1-31, December.
    5. Heung-gu Son & Yunsun Kim & Sahm Kim, 2020. "Time Series Clustering of Electricity Demand for Industrial Areas on Smart Grid," Energies, MDPI, vol. 13(9), pages 1-14, May.
    6. Fatma Yaprakdal & M. Berkay Yılmaz & Mustafa Baysal & Amjad Anvari-Moghaddam, 2020. "A Deep Neural Network-Assisted Approach to Enhance Short-Term Optimal Operational Scheduling of a Microgrid," Sustainability, MDPI, vol. 12(4), pages 1-27, February.
    7. Shi, Jiaqi & Li, Chenxi & Yan, Xiaohe, 2023. "Artificial intelligence for load forecasting: A stacking learning approach based on ensemble diversity regularization," Energy, Elsevier, vol. 262(PB).
    8. Miseta, Tamás & Fodor, Attila & Vathy-Fogarassy, Ágnes, 2022. "Energy trading strategy for storage-based renewable power plants," Energy, Elsevier, vol. 250(C).
    9. Liu, Che & Sun, Bo & Zhang, Chenghui & Li, Fan, 2020. "A hybrid prediction model for residential electricity consumption using holt-winters and extreme learning machine," Applied Energy, Elsevier, vol. 275(C).
    10. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    11. Zhang, Ning & Li, Zhiying & Zou, Xun & Quiring, Steven M., 2019. "Comparison of three short-term load forecast models in Southern California," Energy, Elsevier, vol. 189(C).
    12. Da Liu & Kun Sun & Han Huang & Pingzhou Tang, 2018. "Monthly Load Forecasting Based on Economic Data by Decomposition Integration Theory," Sustainability, MDPI, vol. 10(9), pages 1-22, September.
    13. Abbas Rabiee & Ali Abdali & Seyed Masoud Mohseni-Bonab & Mohsen Hazrati, 2021. "Risk-Averse Scheduling of Combined Heat and Power-Based Microgrids in Presence of Uncertain Distributed Energy Resources," Sustainability, MDPI, vol. 13(13), pages 1-24, June.
    14. Trull, Oscar & García-Díaz, J. Carlos & Troncoso, Alicia, 2021. "One-day-ahead electricity demand forecasting in holidays using discrete-interval moving seasonalities," Energy, Elsevier, vol. 231(C).
    15. Ahmad, Tanveer & Huanxin, Chen & Zhang, Dongdong & Zhang, Hongcai, 2020. "Smart energy forecasting strategy with four machine learning models for climate-sensitive and non-climate sensitive conditions," Energy, Elsevier, vol. 198(C).
    16. Hernandez-Matheus, Alejandro & Löschenbrand, Markus & Berg, Kjersti & Fuchs, Ida & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Sumper, Andreas, 2022. "A systematic review of machine learning techniques related to local energy communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    17. Chujie Tian & Jian Ma & Chunhong Zhang & Panpan Zhan, 2018. "A Deep Neural Network Model for Short-Term Load Forecast Based on Long Short-Term Memory Network and Convolutional Neural Network," Energies, MDPI, vol. 11(12), pages 1-13, December.
    18. Hao Zhen & Dongxiao Niu & Min Yu & Keke Wang & Yi Liang & Xiaomin Xu, 2020. "A Hybrid Deep Learning Model and Comparison for Wind Power Forecasting Considering Temporal-Spatial Feature Extraction," Sustainability, MDPI, vol. 12(22), pages 1-24, November.
    19. Lu, Yakai & Tian, Zhe & Zhang, Qiang & Zhou, Ruoyu & Chu, Chengshan, 2021. "Data augmentation strategy for short-term heating load prediction model of residential building," Energy, Elsevier, vol. 235(C).
    20. Sana Mujeeb & Nadeem Javaid & Manzoor Ilahi & Zahid Wadud & Farruh Ishmanov & Muhammad Khalil Afzal, 2019. "Deep Long Short-Term Memory: A New Price and Load Forecasting Scheme for Big Data in Smart Cities," Sustainability, MDPI, vol. 11(4), pages 1-29, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:17:p:7076-:d:406243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.