IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3105-d800972.html
   My bibliography  Save this article

Forecasting Daily Electricity Consumption in Thailand Using Regression, Artificial Neural Network, Support Vector Machine, and Hybrid Models

Author

Listed:
  • Warut Pannakkong

    (School of Manufacturing Systems and Mechanical Engineering, Sirindhorn International Institute of Technology, Thammasat University, Klong Luang 12121, Pathum Thani, Thailand)

  • Thanyaporn Harncharnchai

    (School of Manufacturing Systems and Mechanical Engineering, Sirindhorn International Institute of Technology, Thammasat University, Klong Luang 12121, Pathum Thani, Thailand)

  • Jirachai Buddhakulsomsiri

    (School of Manufacturing Systems and Mechanical Engineering, Sirindhorn International Institute of Technology, Thammasat University, Klong Luang 12121, Pathum Thani, Thailand)

Abstract

This article involves forecasting daily electricity consumption in Thailand. Electricity consumption data are provided by the Electricity Generating Authority of Thailand, the leading power utility state enterprise under the Ministry of Energy. Five forecasting techniques, including multiple linear regression, artificial neural network (ANN), support vector machine, hybrid models, and ensemble models, are implemented. The article proposes a hyperparameter tuning technique, called sequential grid search, which is based on the widely used grid search, for ANN and hybrid models. Auxiliary variables and indicator variables that can improve the models’ forecasting performance are included. From the computational experiment, the hybrid model of a multiple regression model to forecast the expected daily consumption and ANNs from the sequential grid search to forecast the error term, along with additional indicator variables for some national holidays, provides the best mean absolution percentage error of 1.5664% on the test data set.

Suggested Citation

  • Warut Pannakkong & Thanyaporn Harncharnchai & Jirachai Buddhakulsomsiri, 2022. "Forecasting Daily Electricity Consumption in Thailand Using Regression, Artificial Neural Network, Support Vector Machine, and Hybrid Models," Energies, MDPI, vol. 15(9), pages 1-21, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3105-:d:800972
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3105/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3105/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Deb, Chirag & Zhang, Fan & Yang, Junjing & Lee, Siew Eang & Shah, Kwok Wei, 2017. "A review on time series forecasting techniques for building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 902-924.
    2. Andrea Maria N. C. Ribeiro & Pedro Rafael X. do Carmo & Patricia Takako Endo & Pierangelo Rosati & Theo Lynn, 2022. "Short- and Very Short-Term Firm-Level Load Forecasting for Warehouses: A Comparison of Machine Learning and Deep Learning Models," Energies, MDPI, vol. 15(3), pages 1-24, January.
    3. Vu, D.H. & Muttaqi, K.M. & Agalgaonkar, A.P., 2015. "A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables," Applied Energy, Elsevier, vol. 140(C), pages 385-394.
    4. Umar Javed & Khalid Ijaz & Muhammad Jawad & Ejaz A. Ansari & Noman Shabbir & Lauri Kütt & Oleksandr Husev, 2021. "Exploratory Data Analysis Based Short-Term Electrical Load Forecasting: A Comprehensive Analysis," Energies, MDPI, vol. 14(17), pages 1-22, September.
    5. Chen, Yongbao & Xu, Peng & Chu, Yiyi & Li, Weilin & Wu, Yuntao & Ni, Lizhou & Bao, Yi & Wang, Kun, 2017. "Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings," Applied Energy, Elsevier, vol. 195(C), pages 659-670.
    6. Hong Zhang & Lixing Chen & Yong Qu & Guo Zhao & Zhenwei Guo, 2014. "Support Vector Regression Based on Grid-Search Method for Short-Term Wind Power Forecasting," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-11, June.
    7. K. Gnana Sheela & S. N. Deepa, 2013. "Review on Methods to Fix Number of Hidden Neurons in Neural Networks," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-11, June.
    8. Khuram Pervez Amber & Muhammad Waqar Aslam & Anzar Mahmood & Anila Kousar & Muhammad Yamin Younis & Bilal Akbar & Ghulam Qadar Chaudhary & Syed Kashif Hussain, 2017. "Energy Consumption Forecasting for University Sector Buildings," Energies, MDPI, vol. 10(10), pages 1-18, October.
    9. Peng Liu & Peijun Zheng & Ziyu Chen, 2019. "Deep Learning with Stacked Denoising Auto-Encoder for Short-Term Electric Load Forecasting," Energies, MDPI, vol. 12(12), pages 1-15, June.
    10. Guo-Feng Fan & Shan Qing & Hua Wang & Wei-Chiang Hong & Hong-Juan Li, 2013. "Support Vector Regression Model Based on Empirical Mode Decomposition and Auto Regression for Electric Load Forecasting," Energies, MDPI, vol. 6(4), pages 1-15, April.
    11. Ufuk Çelik & Çağatay Başarır, 2017. "The Prediction of Precious Metal Prices via Artificial Neural Network by Using RapidMiner," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 5(1), pages 45-54, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Christina Gudrun Hart & Michael Hans Breitner, 2022. "Fostering Energy Resilience in the Rural Thai Power System—A Case Study in Nakhon Phanom," Energies, MDPI, vol. 15(19), pages 1-20, October.
    2. Katarzyna Poczeta & Elpiniki I. Papageorgiou, 2022. "Energy Use Forecasting with the Use of a Nested Structure Based on Fuzzy Cognitive Maps and Artificial Neural Networks," Energies, MDPI, vol. 15(20), pages 1-18, October.
    3. Roman V. Klyuev & Irbek D. Morgoev & Angelika D. Morgoeva & Oksana A. Gavrina & Nikita V. Martyushev & Egor A. Efremenkov & Qi Mengxu, 2022. "Methods of Forecasting Electric Energy Consumption: A Literature Review," Energies, MDPI, vol. 15(23), pages 1-33, November.
    4. Lalitpat Aswanuwath & Warut Pannakkong & Jirachai Buddhakulsomsiri & Jessada Karnjana & Van-Nam Huynh, 2023. "A Hybrid Model of VMD-EMD-FFT, Similar Days Selection Method, Stepwise Regression, and Artificial Neural Network for Daily Electricity Peak Load Forecasting," Energies, MDPI, vol. 16(4), pages 1-24, February.
    5. Xiao Li & Yu Zhang & Jing Liu & Zuomeng Sun, 2023. "Towards Sustainable Energy–Water–Environment Nexus System Considering the Interactions between Climatic, Social and Economic Factors: A Case Study of Fujian, China," Sustainability, MDPI, vol. 15(12), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Jieyang & Kimmig, Andreas & Niu, Zhibin & Wang, Jiahai & Liu, Xiufeng & Ovtcharova, Jivka, 2021. "A flexible potential-flow model based high resolution spatiotemporal energy demand forecasting framework," Applied Energy, Elsevier, vol. 299(C).
    2. Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
    3. Wei-Chiang Hong & Guo-Feng Fan, 2019. "Hybrid Empirical Mode Decomposition with Support Vector Regression Model for Short Term Load Forecasting," Energies, MDPI, vol. 12(6), pages 1-16, March.
    4. Ahmad, Tanveer & Huanxin, Chen & Zhang, Dongdong & Zhang, Hongcai, 2020. "Smart energy forecasting strategy with four machine learning models for climate-sensitive and non-climate sensitive conditions," Energy, Elsevier, vol. 198(C).
    5. R. Rueda & M. P. Cuéllar & M. Molina-Solana & Y. Guo & M. C. Pegalajar, 2019. "Generalised Regression Hypothesis Induction for Energy Consumption Forecasting," Energies, MDPI, vol. 12(6), pages 1-22, March.
    6. Gonçalves, Rui & Ribeiro, Vitor Miguel & Pereira, Fernando Lobo, 2023. "Variable Split Convolutional Attention: A novel Deep Learning model applied to the household electric power consumption," Energy, Elsevier, vol. 274(C).
    7. Yuanyuan Zhou & Min Zhou & Qing Xia & Wei-Chiang Hong, 2019. "Construction of EMD-SVR-QGA Model for Electricity Consumption: Case of University Dormitory," Mathematics, MDPI, vol. 7(12), pages 1-23, December.
    8. Liu, Gang & Wang, Kun & Hao, Xiaochen & Zhang, Zhipeng & Zhao, Yantao & Xu, Qingquan, 2022. "SA-LSTMs: A new advance prediction method of energy consumption in cement raw materials grinding system," Energy, Elsevier, vol. 241(C).
    9. Richter, Lucas & Lehna, Malte & Marchand, Sophie & Scholz, Christoph & Dreher, Alexander & Klaiber, Stefan & Lenk, Steve, 2022. "Artificial Intelligence for Electricity Supply Chain automation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    10. Sunil Kumar Mohapatra & Sushruta Mishra & Hrudaya Kumar Tripathy & Akash Kumar Bhoi & Paolo Barsocchi, 2021. "A Pragmatic Investigation of Energy Consumption and Utilization Models in the Urban Sector Using Predictive Intelligence Approaches," Energies, MDPI, vol. 14(13), pages 1-28, June.
    11. Cheng-Wen Lee & Bing-Yi Lin, 2016. "Application of Hybrid Quantum Tabu Search with Support Vector Regression (SVR) for Load Forecasting," Energies, MDPI, vol. 9(11), pages 1-16, October.
    12. Xiao, Tong & Xu, Peng & He, Ruikai & Sha, Huajing, 2022. "Status quo and opportunities for building energy prediction in limited data Context—Overview from a competition," Applied Energy, Elsevier, vol. 305(C).
    13. Bampoulas, Adamantios & Pallonetto, Fabiano & Mangina, Eleni & Finn, Donal P., 2022. "An ensemble learning-based framework for assessing the energy flexibility of residential buildings with multicomponent energy systems," Applied Energy, Elsevier, vol. 315(C).
    14. María Del Carmen Ruiz-Abellón & Antonio Gabaldón & Antonio Guillamón, 2018. "Load Forecasting for a Campus University Using Ensemble Methods Based on Regression Trees," Energies, MDPI, vol. 11(8), pages 1-22, August.
    15. Wang, Qiang & Li, Shuyu & Li, Rongrong, 2018. "Forecasting energy demand in China and India: Using single-linear, hybrid-linear, and non-linear time series forecast techniques," Energy, Elsevier, vol. 161(C), pages 821-831.
    16. de Oliveira, Erick Meira & Cyrino Oliveira, Fernando Luiz, 2018. "Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods," Energy, Elsevier, vol. 144(C), pages 776-788.
    17. Shen, Meng & Lu, Yujie & Wei, Kua Harn & Cui, Qingbin, 2020. "Prediction of household electricity consumption and effectiveness of concerted intervention strategies based on occupant behaviour and personality traits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    18. Menéndez-García, Luis Alfonso & García-Nieto, Paulino José & García-Gonzalo, Esperanza & Sánchez Lasheras, Fernando, 2024. "Time series analysis for COMEX platinum spot price forecasting using SVM, MARS, MLP, VARMA and ARIMA models: A case study," Resources Policy, Elsevier, vol. 95(C).
    19. Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
    20. Han, Lin & Kordzakhia, Nino & Trück, Stefan, 2020. "Volatility spillovers in Australian electricity markets," Energy Economics, Elsevier, vol. 90(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3105-:d:800972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.