IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p5206-d619874.html
   My bibliography  Save this article

Solar-Based DG Allocation Using Harris Hawks Optimization While Considering Practical Aspects

Author

Listed:
  • Suprava Chakraborty

    (TIFAC-CORE Research Center, Vellore Institute of Technology, Vellore 632014, India)

  • Sumit Verma

    (Department of Industrial and Management Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India)

  • Aprajita Salgotra

    (Department of Industrial and Management Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India)

  • Rajvikram Madurai Elavarasan

    (Research & Development Division (Power and Energy), Nestlives Private Limited, Chennai 600091, India)

  • Devaraj Elangovan

    (TIFAC-CORE Research Center, Vellore Institute of Technology, Vellore 632014, India)

  • Lucian Mihet-Popa

    (Faculty of Electrical Engineering, Ostfold University College, 1757 Halden, Norway)

Abstract

The restructuring of power systems and the ever-increasing demand for electricity have given rise to congestion in power networks. The use of distributed generators (DGs) may play a significant role in tackling such issues. DGs may be integrated with electrical power networks to regulate the drift of power in the transmission lines, thereby increasing the power transfer capabilities of lines and improving the overall performance of electrical networks. In this article, an effective method based on the Harris hawks optimization (HHO) algorithm is used to select the optimum capacity, number, and site of solar-based DGs to reduce real power losses and voltage deviation. The proposed HHO has been tested with a complex benchmark function then applied to the IEEE 33 and IEEE 69 bus radial distribution systems. The single and multiple solar-based DGs are optimized for the optimum size and site with a unity power factor. It is observed that the overall performance of the systems is enhanced when additional DGs are installed. Moreover, considering the stochastic and sporadic nature of solar irradiance, the practical size of DG has been suggested based on analysis that may be adopted while designing the actual photovoltaic (PV) plant for usage. The obtained simulation outcomes are compared with the latest state-of-the-art literature and suggest that the proposed HHO is capable of processing complex high dimensional benchmark functions and has capability to handle problems pertaining to electrical distribution in an effective manner.

Suggested Citation

  • Suprava Chakraborty & Sumit Verma & Aprajita Salgotra & Rajvikram Madurai Elavarasan & Devaraj Elangovan & Lucian Mihet-Popa, 2021. "Solar-Based DG Allocation Using Harris Hawks Optimization While Considering Practical Aspects," Energies, MDPI, vol. 14(16), pages 1-26, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5206-:d:619874
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/5206/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/5206/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Minh Quan Duong & Thai Dinh Pham & Thang Trung Nguyen & Anh Tuan Doan & Hai Van Tran, 2019. "Determination of Optimal Location and Sizing of Solar Photovoltaic Distribution Generation Units in Radial Distribution Systems," Energies, MDPI, vol. 12(1), pages 1-24, January.
    2. Das, Choton K. & Bass, Octavian & Kothapalli, Ganesh & Mahmoud, Thair S. & Habibi, Daryoush, 2018. "Optimal placement of distributed energy storage systems in distribution networks using artificial bee colony algorithm," Applied Energy, Elsevier, vol. 232(C), pages 212-228.
    3. Wenxia Liu & Huiting Xu & Shuya Niu & Jiang Xie, 2016. "Optimal Distributed Generator Allocation Method Considering Voltage Control Cost," Sustainability, MDPI, vol. 8(2), pages 1-20, February.
    4. Quadri, Imran Ahmad & Bhowmick, S. & Joshi, D., 2018. "A comprehensive technique for optimal allocation of distributed energy resources in radial distribution systems," Applied Energy, Elsevier, vol. 211(C), pages 1245-1260.
    5. Mohammad Zohrul Islam & Noor Izzri Abdul Wahab & Veerapandiyan Veerasamy & Hashim Hizam & Nashiren Farzilah Mailah & Josep M. Guerrero & Mohamad Nasrun Mohd Nasir, 2020. "A Harris Hawks Optimization Based Single- and Multi-Objective Optimal Power Flow Considering Environmental Emission," Sustainability, MDPI, vol. 12(13), pages 1-25, June.
    6. Hui Wang & Jun Wang & Zailin Piao & Xiaofang Meng & Chao Sun & Gang Yuan & Sitong Zhu, 2020. "The Optimal Allocation and Operation of an Energy Storage System with High Penetration Grid-Connected Photovoltaic Systems," Sustainability, MDPI, vol. 12(15), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joseph P. Varghese & Kumaravel Sundaramoorthy & Ashok Sankaran, 2023. "Development and Validation of a Load Flow Based Scheme for Optimum Placing and Quantifying of Distributed Generation for Alleviation of Congestion in Interconnected Power Systems," Energies, MDPI, vol. 16(6), pages 1-24, March.
    2. Abdelhady Ramadan & Salah Kamel & Mohamed H. Hassan & Marcos Tostado-Véliz & Ali M. Eltamaly, 2021. "Parameter Estimation of Static/Dynamic Photovoltaic Models Using a Developed Version of Eagle Strategy Gradient-Based Optimizer," Sustainability, MDPI, vol. 13(23), pages 1-29, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Pushpendra & Meena, Nand K. & Yang, Jin & Vega-Fuentes, Eduardo & Bishnoi, Shree Krishna, 2020. "Multi-criteria decision making monarch butterfly optimization for optimal distributed energy resources mix in distribution networks," Applied Energy, Elsevier, vol. 278(C).
    2. Mahesh Kumar & Amir Mahmood Soomro & Waqar Uddin & Laveet Kumar, 2022. "Optimal Multi-Objective Placement and Sizing of Distributed Generation in Distribution System: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-48, October.
    3. Mahmoud G. Hemeida & Salem Alkhalaf & Al-Attar A. Mohamed & Abdalla Ahmed Ibrahim & Tomonobu Senjyu, 2020. "Distributed Generators Optimization Based on Multi-Objective Functions Using Manta Rays Foraging Optimization Algorithm (MRFO)," Energies, MDPI, vol. 13(15), pages 1-37, July.
    4. Virgilio Alfonso Murillo Rodríguez & Noé Villa Villaseñor & José Manuel Robles Solís & Omar Alejandro Guirette Barbosa, 2023. "Impact of Automation on Enhancing Energy Quality in Grid-Connected Photovoltaic Systems," Energies, MDPI, vol. 16(17), pages 1-25, August.
    5. Li, Peng & Ji, Haoran & Yu, Hao & Zhao, Jinli & Wang, Chengshan & Song, Guanyu & Wu, Jianzhong, 2019. "Combined decentralized and local voltage control strategy of soft open points in active distribution networks," Applied Energy, Elsevier, vol. 241(C), pages 613-624.
    6. Mousavi, Navid & Kothapalli, Ganesh & Habibi, Daryoush & Das, Choton K. & Baniasadi, Ali, 2020. "A novel photovoltaic-pumped hydro storage microgrid applicable to rural areas," Applied Energy, Elsevier, vol. 262(C).
    7. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    8. Chandrasekaran Venkatesan & Raju Kannadasan & Mohammed H. Alsharif & Mun-Kyeom Kim & Jamel Nebhen, 2021. "A Novel Multiobjective Hybrid Technique for Siting and Sizing of Distributed Generation and Capacitor Banks in Radial Distribution Systems," Sustainability, MDPI, vol. 13(6), pages 1-34, March.
    9. Shahid Nawaz Khan & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Mohammed A. Alghassab, 2022. "Smart Distribution Mechanisms—Part I: From the Perspectives of Planning," Sustainability, MDPI, vol. 14(23), pages 1-109, December.
    10. Sachin Kumar & Kumari Sarita & Akanksha Singh S Vardhan & Rajvikram Madurai Elavarasan & R. K. Saket & Narottam Das, 2020. "Reliability Assessment of Wind-Solar PV Integrated Distribution System Using Electrical Loss Minimization Technique," Energies, MDPI, vol. 13(21), pages 1-30, October.
    11. Ting Wang & Qiya Wang & Caiqing Zhang, 2021. "Research on the Optimal Operation of a Novel Renewable Multi-Energy Complementary System in Rural Areas," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    12. Gonçalves Rigueira Pinheiro Castro, Pedro Henrique & Filho, Delly Oliveira & Rosa, André Pereira & Navas Gracia, Luis Manuel & Almeida Silva, Thais Cristina, 2024. "Comparison of externalities of biogas and photovoltaic solar energy for energy planning," Energy Policy, Elsevier, vol. 188(C).
    13. Samson Oladayo Ayanlade & Funso Kehinde Ariyo & Abdulrasaq Jimoh & Kayode Timothy Akindeji & Adeleye Oluwaseye Adetunji & Emmanuel Idowu Ogunwole & Dolapo Eniola Owolabi, 2023. "Optimal Allocation of Photovoltaic Distributed Generations in Radial Distribution Networks," Sustainability, MDPI, vol. 15(18), pages 1-26, September.
    14. Wooyoung Jeon & Chul-Yong Lee, 2019. "Estimating the Cost of Solar Generation Uncertainty and the Impact of Collocated Energy Storage: The Case of Korea," Sustainability, MDPI, vol. 11(5), pages 1-18, March.
    15. Azeredo, Lucas F.S. & Yahyaoui, Imene & Fiorotti, Rodrigo & Fardin, Jussara F. & Garcia-Pereira, Hilel & Rocha, Helder R.O., 2023. "Study of reducing losses, short-circuit currents and harmonics by allocation of distributed generation, capacitor banks and fault current limiters in distribution grids," Applied Energy, Elsevier, vol. 350(C).
    16. Ji, Haoran & Wang, Chengshan & Li, Peng & Song, Guanyu & Yu, Hao & Wu, Jianzhong, 2019. "Quantified analysis method for operational flexibility of active distribution networks with high penetration of distributed generators," Applied Energy, Elsevier, vol. 239(C), pages 706-714.
    17. Ahmed Alzahrani & Hussain Alharthi & Muhammad Khalid, 2019. "Minimization of Power Losses through Optimal Battery Placement in a Distributed Network with High Penetration of Photovoltaics," Energies, MDPI, vol. 13(1), pages 1-16, December.
    18. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "A Slime Mould Algorithm Programming for Solving Single and Multi-Objective Optimal Power Flow Problems with Pareto Front Approach: A Case Study of the Iraqi Super Grid High Voltage," Energies, MDPI, vol. 15(20), pages 1-33, October.
    19. Chaminda Bandara, W.G. & Godaliyadda, G.M.R.I. & Ekanayake, M.P.B. & Ekanayake, J.B., 2020. "Coordinated photovoltaic re-phasing: A novel method to maximize renewable energy integration in low voltage networks by mitigating network unbalances," Applied Energy, Elsevier, vol. 280(C).
    20. Zezhong Li & Xiangang Peng & Yilin Xu & Fucheng Zhong & Sheng Ouyang & Kaiguo Xuan, 2023. "A Stackelberg Game-Based Model of Distribution Network-Distributed Energy Storage Systems Considering Demand Response," Mathematics, MDPI, vol. 12(1), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5206-:d:619874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.