IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i2p193-d64230.html
   My bibliography  Save this article

Optimal Distributed Generator Allocation Method Considering Voltage Control Cost

Author

Listed:
  • Wenxia Liu

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, No. 2 Beinong Road, Changping District, Beijing 102206, China)

  • Huiting Xu

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, No. 2 Beinong Road, Changping District, Beijing 102206, China)

  • Shuya Niu

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, No. 2 Beinong Road, Changping District, Beijing 102206, China)

  • Jiang Xie

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, No. 2 Beinong Road, Changping District, Beijing 102206, China)

Abstract

Up till now, the high penetration of intermittent distributed generation (DG) has posed great challenges to the planning and operation of the grid. To achieve the best balance between economic cost and acceptable capacity of DG, this paper proposes a new integrated planning method of the active distribution network while considering voltage control cost. Firstly, characteristics of decentralized and centralized voltage control methods were analyzed. The technical frameworks, voltage control strategies and economical models of different voltage control systems were put forward. Then, an integrated planning model with objectives to minimize the comprehensive cost and maximize clean energy utilization under the constraint of maintaining acceptable voltage was implemented. Simulations were conducted using the Multi-objective Differential Evolution Algorithm (MODE). IEEE 33-bus test systems were employed to verify the effectiveness of the proposed method. The results demonstrate that the proposed approach is able to connect larger distributed generators and decrease the economic cost of Distribution Network Operators while maintaining voltage within the statutory limits.

Suggested Citation

  • Wenxia Liu & Huiting Xu & Shuya Niu & Jiang Xie, 2016. "Optimal Distributed Generator Allocation Method Considering Voltage Control Cost," Sustainability, MDPI, vol. 8(2), pages 1-20, February.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:2:p:193-:d:64230
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/2/193/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/2/193/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Komsan Hongesombut & Suphicha Punyakunlaset & Sillawat Romphochai, 2021. "Under Frequency Protection Enhancement of an Islanded Active Distribution Network Using a Virtual Inertia-Controlled-Battery Energy Storage System," Sustainability, MDPI, vol. 13(2), pages 1-39, January.
    2. Moonsung Bae & Hwanik Lee & Byongjun Lee, 2017. "An Approach to Improve the Penetration of Sustainable Energy Using Optimal Transformer Tap Control," Sustainability, MDPI, vol. 9(9), pages 1-15, August.
    3. Mahesh Kumar & Amir Mahmood Soomro & Waqar Uddin & Laveet Kumar, 2022. "Optimal Multi-Objective Placement and Sizing of Distributed Generation in Distribution System: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-48, October.
    4. Suprava Chakraborty & Sumit Verma & Aprajita Salgotra & Rajvikram Madurai Elavarasan & Devaraj Elangovan & Lucian Mihet-Popa, 2021. "Solar-Based DG Allocation Using Harris Hawks Optimization While Considering Practical Aspects," Energies, MDPI, vol. 14(16), pages 1-26, August.
    5. Elbasuony, Ghada S. & Abdel Aleem, Shady H.E. & Ibrahim, Ahmed M. & Sharaf, Adel M., 2018. "A unified index for power quality evaluation in distributed generation systems," Energy, Elsevier, vol. 149(C), pages 607-622.
    6. Mohamed A. Tolba & Hegazy Rezk & Vladimir Tulsky & Ahmed A. Zaki Diab & Almoataz Y. Abdelaziz & Artem Vanin, 2018. "Impact of Optimum Allocation of Renewable Distributed Generations on Distribution Networks Based on Different Optimization Algorithms," Energies, MDPI, vol. 11(1), pages 1-33, January.
    7. Qais Alsafasfeh & Omar A. Saraereh & Imran Khan & Sunghwan Kim, 2019. "Solar PV Grid Power Flow Analysis," Sustainability, MDPI, vol. 11(6), pages 1-25, March.
    8. Aghajan-Eshkevari, Saleh & Ameli, Mohammad Taghi & Azad, Sasan, 2023. "Optimal routing and power management of electric vehicles in coupled power distribution and transportation systems," Applied Energy, Elsevier, vol. 341(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:2:p:193-:d:64230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.