IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v232y2018icp212-228.html
   My bibliography  Save this article

Optimal placement of distributed energy storage systems in distribution networks using artificial bee colony algorithm

Author

Listed:
  • Das, Choton K.
  • Bass, Octavian
  • Kothapalli, Ganesh
  • Mahmoud, Thair S.
  • Habibi, Daryoush

Abstract

The deployment of utility-scale energy storage systems (ESSs) can be a significant avenue for improving the performance of distribution networks. An optimally placed ESS can reduce power losses and line loading, mitigate peak network demand, improve voltage profile, and in some cases contribute to the network fault level diagnosis. This paper proposes a strategy for optimal placement of distributed ESSs in distribution networks to minimize voltage deviation, line loading, and power losses. The optimal placement of distributed ESSs is investigated in a medium voltage IEEE-33 bus distribution system, which is influenced by a high penetration of renewable (solar and wind) distributed generation, for two scenarios: (1) with a uniform ESS size and (2) with non-uniform ESS sizes. System models for the proposed implementations are developed, analyzed, and tested using DIgSILENT PowerFactory. The artificial bee colony optimization approach is employed to optimize the objective function parameters through a Python script automating simulation events in PowerFactory. The optimization results, obtained from the artificial bee colony approach, are also compared with the use of a particle swarm optimization algorithm. The simulation results suggest that the proposed ESS placement approach can successfully achieve the objectives of voltage profile improvement, line loading minimization, and power loss reduction, and thereby significantly improve distribution network performance.

Suggested Citation

  • Das, Choton K. & Bass, Octavian & Kothapalli, Ganesh & Mahmoud, Thair S. & Habibi, Daryoush, 2018. "Optimal placement of distributed energy storage systems in distribution networks using artificial bee colony algorithm," Applied Energy, Elsevier, vol. 232(C), pages 212-228.
  • Handle: RePEc:eee:appene:v:232:y:2018:i:c:p:212-228
    DOI: 10.1016/j.apenergy.2018.07.100
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918311358
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.07.100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van der Stelt, Sander & AlSkaif, Tarek & van Sark, Wilfried, 2018. "Techno-economic analysis of household and community energy storage for residential prosumers with smart appliances," Applied Energy, Elsevier, vol. 209(C), pages 266-276.
    2. Sardi, Junainah & Mithulananthan, N. & Gallagher, M. & Hung, Duong Quoc, 2017. "Multiple community energy storage planning in distribution networks using a cost-benefit analysis," Applied Energy, Elsevier, vol. 190(C), pages 453-463.
    3. Parra, David & Gillott, Mark & Norman, Stuart A. & Walker, Gavin S., 2015. "Optimum community energy storage system for PV energy time-shift," Applied Energy, Elsevier, vol. 137(C), pages 576-587.
    4. Das, Trishna & Krishnan, Venkat & McCalley, James D., 2015. "Assessing the benefits and economics of bulk energy storage technologies in the power grid," Applied Energy, Elsevier, vol. 139(C), pages 104-118.
    5. Daghi, Majid & Sedghi, Mahdi & Ahmadian, Ali & Aliakbar-Golkar, Masoud, 2016. "Factor analysis based optimal storage planning in active distribution network considering different battery technologies," Applied Energy, Elsevier, vol. 183(C), pages 456-469.
    6. Marini, Abbas & Latify, Mohammad Amin & Ghazizadeh, Mohammad Sadegh & Salemnia, Ahmad, 2015. "Long-term chronological load modeling in power system studies with energy storage systems," Applied Energy, Elsevier, vol. 156(C), pages 436-448.
    7. Mahani, Khashayar & Farzan, Farbod & Jafari, Mohsen A., 2017. "Network-aware approach for energy storage planning and control in the network with high penetration of renewables," Applied Energy, Elsevier, vol. 195(C), pages 974-990.
    8. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Akinola, O.A., 2016. "Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building," Applied Energy, Elsevier, vol. 171(C), pages 153-171.
    9. Lin, Yashen & Johnson, Jeremiah X. & Mathieu, Johanna L., 2016. "Emissions impacts of using energy storage for power system reserves," Applied Energy, Elsevier, vol. 168(C), pages 444-456.
    10. de Sisternes, Fernando J. & Jenkins, Jesse D. & Botterud, Audun, 2016. "The value of energy storage in decarbonizing the electricity sector," Applied Energy, Elsevier, vol. 175(C), pages 368-379.
    11. Ikeda, Shintaro & Ooka, Ryozo, 2015. "Metaheuristic optimization methods for a comprehensive operating schedule of battery, thermal energy storage, and heat source in a building energy system," Applied Energy, Elsevier, vol. 151(C), pages 192-205.
    12. Santos, Sérgio F. & Fitiwi, Desta Z. & Cruz, Marco R.M. & Cabrita, Carlos M.P. & Catalão, João P.S., 2017. "Impacts of optimal energy storage deployment and network reconfiguration on renewable integration level in distribution systems," Applied Energy, Elsevier, vol. 185(P1), pages 44-55.
    13. Rodrigues, E.M.G. & Godina, R. & Catalão, J.P.S., 2017. "Modelling electrochemical energy storage devices in insular power network applications supported on real data," Applied Energy, Elsevier, vol. 188(C), pages 315-329.
    14. Solomon, A.A. & Kammen, Daniel M. & Callaway, D., 2014. "The role of large-scale energy storage design and dispatch in the power grid: A study of very high grid penetration of variable renewable resources," Applied Energy, Elsevier, vol. 134(C), pages 75-89.
    15. Sardi, Junainah & Mithulananthan, N. & Hung, Duong Quoc, 2017. "Strategic allocation of community energy storage in a residential system with rooftop PV units," Applied Energy, Elsevier, vol. 206(C), pages 159-171.
    16. Moreno, Rodrigo & Moreira, Roberto & Strbac, Goran, 2015. "A MILP model for optimising multi-service portfolios of distributed energy storage," Applied Energy, Elsevier, vol. 137(C), pages 554-566.
    17. Motalleb, Mahdi & Reihani, Ehsan & Ghorbani, Reza, 2016. "Optimal placement and sizing of the storage supporting transmission and distribution networks," Renewable Energy, Elsevier, vol. 94(C), pages 651-659.
    18. Sidhu, Arjan S. & Pollitt, Michael G. & Anaya, Karim L., 2018. "A social cost benefit analysis of grid-scale electrical energy storage projects: A case study," Applied Energy, Elsevier, vol. 212(C), pages 881-894.
    19. Parra, David & Norman, Stuart A. & Walker, Gavin S. & Gillott, Mark, 2017. "Optimum community energy storage for renewable energy and demand load management," Applied Energy, Elsevier, vol. 200(C), pages 358-369.
    20. Parra, David & Norman, Stuart A. & Walker, Gavin S. & Gillott, Mark, 2016. "Optimum community energy storage system for demand load shifting," Applied Energy, Elsevier, vol. 174(C), pages 130-143.
    21. Li, Yang & Feng, Bo & Li, Guoqing & Qi, Junjian & Zhao, Dongbo & Mu, Yunfei, 2018. "Optimal distributed generation planning in active distribution networks considering integration of energy storage," Applied Energy, Elsevier, vol. 210(C), pages 1073-1081.
    22. Zhang, Yang & Campana, Pietro Elia & Lundblad, Anders & Yan, Jinyue, 2017. "Comparative study of hydrogen storage and battery storage in grid connected photovoltaic system: Storage sizing and rule-based operation," Applied Energy, Elsevier, vol. 201(C), pages 397-411.
    23. Bai, Linquan & Jiang, Tao & Li, Fangxing & Chen, Houhe & Li, Xue, 2018. "Distributed energy storage planning in soft open point based active distribution networks incorporating network reconfiguration and DG reactive power capability," Applied Energy, Elsevier, vol. 210(C), pages 1082-1091.
    24. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    25. Zhang, Shenxi & Cheng, Haozhong & Wang, Dan & Zhang, Libo & Li, Furong & Yao, Liangzhong, 2018. "Distributed generation planning in active distribution network considering demand side management and network reconfiguration," Applied Energy, Elsevier, vol. 228(C), pages 1921-1936.
    26. Yunusov, Timur & Frame, Damien & Holderbaum, William & Potter, Ben, 2016. "The impact of location and type on the performance of low-voltage network connected battery energy storage systems," Applied Energy, Elsevier, vol. 165(C), pages 202-213.
    27. Das, Choton K. & Bass, Octavian & Kothapalli, Ganesh & Mahmoud, Thair S. & Habibi, Daryoush, 2018. "Overview of energy storage systems in distribution networks: Placement, sizing, operation, and power quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1205-1230.
    28. Go, Roderick S. & Munoz, Francisco D. & Watson, Jean-Paul, 2016. "Assessing the economic value of co-optimized grid-scale energy storage investments in supporting high renewable portfolio standards," Applied Energy, Elsevier, vol. 183(C), pages 902-913.
    29. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    30. Zhu, Kai & Li, Xueqiang & Campana, Pietro Elia & Li, Hailong & Yan, Jinyue, 2018. "Techno-economic feasibility of integrating energy storage systems in refrigerated warehouses," Applied Energy, Elsevier, vol. 216(C), pages 348-357.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Das, Choton K. & Bass, Octavian & Mahmoud, Thair S. & Kothapalli, Ganesh & Mousavi, Navid & Habibi, Daryoush & Masoum, Mohammad A.S., 2019. "Optimal allocation of distributed energy storage systems to improve performance and power quality of distribution networks," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    2. Adefarati, T. & Bansal, R.C., 2019. "Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources," Applied Energy, Elsevier, vol. 236(C), pages 1089-1114.
    3. Koirala, Binod Prasad & van Oost, Ellen & van der Windt, Henny, 2018. "Community energy storage: A responsible innovation towards a sustainable energy system?," Applied Energy, Elsevier, vol. 231(C), pages 570-585.
    4. Jannesar, Mohammad Rasol & Sedighi, Alireza & Savaghebi, Mehdi & Guerrero, Josep M., 2018. "Optimal placement, sizing, and daily charge/discharge of battery energy storage in low voltage distribution network with high photovoltaic penetration," Applied Energy, Elsevier, vol. 226(C), pages 957-966.
    5. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    6. Saboori, Hedayat & Hemmati, Reza & Ghiasi, Seyyed Mohammad Sadegh & Dehghan, Shahab, 2017. "Energy storage planning in electric power distribution networks – A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1108-1121.
    7. Ebrahimi, Mahyar, 2020. "Storing electricity as thermal energy at community level for demand side management," Energy, Elsevier, vol. 193(C).
    8. Hannan, M.A. & Faisal, M. & Jern Ker, Pin & Begum, R.A. & Dong, Z.Y. & Zhang, C., 2020. "Review of optimal methods and algorithms for sizing energy storage systems to achieve decarbonization in microgrid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    9. Walker, Awnalisa & Kwon, Soongeol, 2021. "Analysis on impact of shared energy storage in residential community: Individual versus shared energy storage," Applied Energy, Elsevier, vol. 282(PA).
    10. Hartmann, Bálint & Divényi, Dániel & Vokony, István, 2018. "Evaluation of business possibilities of energy storage at commercial and industrial consumers – A case study," Applied Energy, Elsevier, vol. 222(C), pages 59-66.
    11. Jun Zhao & Xiaonan Wang & Jinsheng Chu, 2022. "The Strategies for Increasing Grid-Integrated Share of Renewable Energy with Energy Storage and Existing Coal Fired Power Generation in China," Energies, MDPI, vol. 15(13), pages 1-18, June.
    12. Mahdavi, Sajad & Hemmati, Reza & Jirdehi, Mehdi Ahmadi, 2018. "Two-level planning for coordination of energy storage systems and wind-solar-diesel units in active distribution networks," Energy, Elsevier, vol. 151(C), pages 954-965.
    13. Scheller, Fabian & Burkhardt, Robert & Schwarzeit, Robert & McKenna, Russell & Bruckner, Thomas, 2020. "Competition between simultaneous demand-side flexibility options: the case of community electricity storage systems," Applied Energy, Elsevier, vol. 269(C).
    14. Pandžić, H. & Dvorkin, Y. & Carrión, M., 2018. "Investments in merchant energy storage: Trading-off between energy and reserve markets," Applied Energy, Elsevier, vol. 230(C), pages 277-286.
    15. Li, Jinghua & Lu, Bo & Wang, Zhibang & Zhu, Mengshu, 2021. "Bi-level optimal planning model for energy storage systems in a virtual power plant," Renewable Energy, Elsevier, vol. 165(P2), pages 77-95.
    16. Walker, Awnalisa & Kwon, Soongeol, 2021. "Design of structured control policy for shared energy storage in residential community: A stochastic optimization approach," Applied Energy, Elsevier, vol. 298(C).
    17. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    18. Das, Choton K. & Bass, Octavian & Kothapalli, Ganesh & Mahmoud, Thair S. & Habibi, Daryoush, 2018. "Overview of energy storage systems in distribution networks: Placement, sizing, operation, and power quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1205-1230.
    19. Fabian Scheller & Robert Burkhardt & Robert Schwarzeit & Russell McKenna & Thomas Bruckner, 2020. "Competition between simultaneous demand-side flexibility options: The case of community electricity storage systems," Papers 2011.05809, arXiv.org.
    20. Lombardi, P. & Schwabe, F., 2017. "Sharing economy as a new business model for energy storage systems," Applied Energy, Elsevier, vol. 188(C), pages 485-496.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:232:y:2018:i:c:p:212-228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.