IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v239y2019icp706-714.html
   My bibliography  Save this article

Quantified analysis method for operational flexibility of active distribution networks with high penetration of distributed generators

Author

Listed:
  • Ji, Haoran
  • Wang, Chengshan
  • Li, Peng
  • Song, Guanyu
  • Yu, Hao
  • Wu, Jianzhong

Abstract

With the integration of high shares of distributed generators (DGs), it is increasingly difficult to cope with the various uncertainties and puts forward higher requirements for the operational flexibility in active distribution networks (ADNs). Controllability of ADNs has been significantly improved by the application of energy storage and power electronic devices. However, due to the difficulties in effective coordination of various controllable resources, the controllability cannot be fully translated into the system flexibility. In this paper, an analytical framework for quantifying the flexibility of ADNs is proposed, including the quantification of node flexibility, the matching of system flexibility, and the flexibility of network transmission. The proposed framework provides a novel perspective of flexibility to reinterpret operation issues of distribution networks. As the power imbalance and voltage deviation are even more severe caused by the high shares of DG integration, the indexes of flexibility from magnitude, frequency and intensity dimensions are deteriorated in ADNs operation. Through the spatial and temporal regulation of power flow, various controllable devices, such as soft open points (SOPs) and energy storage system (ESS), can effectively mitigate the power imbalance and voltage deviation to improve the indexes of system flexibility. Thus, under the unified analytical framework, the potential benefits of system controllability are fully utilized to provide effective countermeasures for the flexible operation of ADNs. Finally, case studies are performed on the modified IEEE 33-node system to quantify the operational flexibility of ADNs and verify the flexibility enhancement brought by controllable resources.

Suggested Citation

  • Ji, Haoran & Wang, Chengshan & Li, Peng & Song, Guanyu & Yu, Hao & Wu, Jianzhong, 2019. "Quantified analysis method for operational flexibility of active distribution networks with high penetration of distributed generators," Applied Energy, Elsevier, vol. 239(C), pages 706-714.
  • Handle: RePEc:eee:appene:v:239:y:2019:i:c:p:706-714
    DOI: 10.1016/j.apenergy.2019.02.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919302983
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.02.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ji, Haoran & Wang, Chengshan & Li, Peng & Zhao, Jinli & Song, Guanyu & Wu, Jianzhong, 2018. "Quantified flexibility evaluation of soft open points to improve distributed generator penetration in active distribution networks based on difference-of-convex programming," Applied Energy, Elsevier, vol. 218(C), pages 338-348.
    2. Cao, Wanyu & Wu, Jianzhong & Jenkins, Nick & Wang, Chengshan & Green, Timothy, 2016. "Operating principle of Soft Open Points for electrical distribution network operation," Applied Energy, Elsevier, vol. 164(C), pages 245-257.
    3. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2014. "Integration of PV and BES units in commercial distribution systems considering energy loss and voltage stability," Applied Energy, Elsevier, vol. 113(C), pages 1162-1170.
    4. Abdullah, M.A. & Agalgaonkar, A.P. & Muttaqi, K.M., 2014. "Assessment of energy supply and continuity of service in distribution network with renewable distributed generation," Applied Energy, Elsevier, vol. 113(C), pages 1015-1026.
    5. Das, Choton K. & Bass, Octavian & Kothapalli, Ganesh & Mahmoud, Thair S. & Habibi, Daryoush, 2018. "Optimal placement of distributed energy storage systems in distribution networks using artificial bee colony algorithm," Applied Energy, Elsevier, vol. 232(C), pages 212-228.
    6. Wang, Jiadong & Wang, Jianhui & Liu, Cong & Ruiz, Juan P., 2013. "Stochastic unit commitment with sub-hourly dispatch constraints," Applied Energy, Elsevier, vol. 105(C), pages 418-422.
    7. Kayal, Partha & Chanda, C.K., 2015. "Optimal mix of solar and wind distributed generations considering performance improvement of electrical distribution network," Renewable Energy, Elsevier, vol. 75(C), pages 173-186.
    8. Xu, Xu & Li, Jiayong & Xu, Zhao & Zhao, Jian & Lai, Chun Sing, 2019. "Enhancing photovoltaic hosting capacity—A stochastic approach to optimal planning of static var compensator devices in distribution networks," Applied Energy, Elsevier, vol. 238(C), pages 952-962.
    9. Wang, Chengshan & Song, Guanyu & Li, Peng & Ji, Haoran & Zhao, Jinli & Wu, Jianzhong, 2017. "Optimal siting and sizing of soft open points in active electrical distribution networks," Applied Energy, Elsevier, vol. 189(C), pages 301-309.
    10. Liu, Yixin & Guo, Li & Wang, Chengshan, 2018. "A robust operation-based scheduling optimization for smart distribution networks with multi-microgrids," Applied Energy, Elsevier, vol. 228(C), pages 130-140.
    11. Cao, Wanyu & Wu, Jianzhong & Jenkins, Nick & Wang, Chengshan & Green, Timothy, 2016. "Benefits analysis of Soft Open Points for electrical distribution network operation," Applied Energy, Elsevier, vol. 165(C), pages 36-47.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lv, Chaoxian & Liang, Rui & Zhang, Ge & Zhang, Xiaotong & Jin, Wei, 2023. "Energy accommodation-oriented interaction of active distribution network and central energy station considering soft open points," Energy, Elsevier, vol. 268(C).
    2. Luo, Tengqi & Xuan, Ang & Wang, Yafei & Li, Guanglei & Fang, Juan & Liu, Zhengguang, 2023. "Energy efficiency evaluation and optimization of active distribution networks with building integrated photovoltaic systems," Renewable Energy, Elsevier, vol. 219(P1).
    3. Zhao, Jinli & Zhang, Mengzhen & Yu, Hao & Ji, Haoran & Song, Guanyu & Li, Peng & Wang, Chengshan & Wu, Jianzhong, 2019. "An islanding partition method of active distribution networks based on chance-constrained programming," Applied Energy, Elsevier, vol. 242(C), pages 78-91.
    4. Zhang, Shida & Ge, Shaoyun & Liu, Hong & Zhao, Bo & Ni, Chouwei & Hou, Guocheng & Wang, Chengshan, 2024. "Region-based flexibility quantification in distribution systems: An analytical approach considering spatio-temporal coupling," Applied Energy, Elsevier, vol. 355(C).
    5. Zhao, Mingzhe & Wang, Yimin & Wang, Xuebin & Chang, Jianxia & Chen, Yunhua & Zhou, Yong & Guo, Aijun, 2022. "Flexibility evaluation of wind-PV-hydro multi-energy complementary base considering the compensation ability of cascade hydropower stations," Applied Energy, Elsevier, vol. 315(C).
    6. Ziqi Zhang & Zhong Chen & Qi Zhao & Puliang Du, 2021. "Multi-Level Cooperative Scheduling Based on Robust Optimization Considering Flexibilities and Uncertainties of ADN and MG," Energies, MDPI, vol. 14(21), pages 1-23, November.
    7. Zhou, Yulu & Zhang, Jingrui, 2020. "Three-layer day-ahead scheduling for active distribution network by considering multiple stakeholders," Energy, Elsevier, vol. 207(C).
    8. Deakin, Matthew & Sarantakos, Ilias & Greenwood, David & Bialek, Janusz & Taylor, Phil C. & Walker, Sara, 2023. "Comparative analysis of services from soft open points using cost–benefit analysis," Applied Energy, Elsevier, vol. 333(C).
    9. Li, Peng & Ji, Haoran & Yu, Hao & Zhao, Jinli & Wang, Chengshan & Song, Guanyu & Wu, Jianzhong, 2019. "Combined decentralized and local voltage control strategy of soft open points in active distribution networks," Applied Energy, Elsevier, vol. 241(C), pages 613-624.
    10. Zare Oskouei, Morteza & Gharehpetian, Gevork B., 2024. "Flexibility enhancement of multi-district DISCOs considering a trade-off between congestion and extractable reserve capacity from virtual energy storage systems," Applied Energy, Elsevier, vol. 353(PB).
    11. Zhao, Zhida & Yu, Hao & Li, Peng & Li, Peng & Kong, Xiangyu & Wu, Jianzhong & Wang, Chengshan, 2019. "Optimal placement of PMUs and communication links for distributed state estimation in distribution networks," Applied Energy, Elsevier, vol. 256(C).
    12. Su, Hongzhi & Wang, Chengshan & Li, Peng & Liu, Zhelin & Yu, Li & Wu, Jianzhong, 2019. "Optimal placement of phasor measurement unit in distribution networks considering the changes in topology," Applied Energy, Elsevier, vol. 250(C), pages 313-322.
    13. Jiao, Heng & Xiao, Jun & Zu, Guoqiang & Song, Chenhui & Lv, Zihan & Bao, Zhenyu & Qiu, Zekai, 2024. "Concavity-convexity of distribution system security region. Part II: Mathematical principle, judgment, and application," Applied Energy, Elsevier, vol. 361(C).
    14. Qiu, Rui & Liao, Qi & Yan, Jie & Yan, Yamin & Guo, Zhichao & Liang, Yongtu & Zhang, Haoran, 2021. "The coupling impact of subsystem interconnection and demand response on the distributed energy systems: A case study of the composite community in China," Energy, Elsevier, vol. 228(C).
    15. Li, Peng & Ji, Jie & Ji, Haoran & Song, Guanyu & Wang, Chengshan & Wu, Jianzhong, 2020. "Self-healing oriented supply restoration method based on the coordination of multiple SOPs in active distribution networks," Energy, Elsevier, vol. 195(C).
    16. Lv, Chaoxian & Yu, Hao & Li, Peng & Wang, Chengshan & Xu, Xiandong & Li, Shuquan & Wu, Jianzhong, 2019. "Model predictive control based robust scheduling of community integrated energy system with operational flexibility," Applied Energy, Elsevier, vol. 243(C), pages 250-265.
    17. Bao, Minglei & Hui, Hengyu & Ding, Yi & Sun, Xiaocong & Zheng, Chenghang & Gao, Xiang, 2023. "An efficient framework for exploiting operational flexibility of load energy hubs in risk management of integrated electricity-gas systems," Applied Energy, Elsevier, vol. 338(C).
    18. Su, Hongzhi & Wang, Chengshan & Li, Peng & Li, Peng & Liu, Zhelin & Wu, Jianzhong, 2019. "Novel voltage-to-power sensitivity estimation for phasor measurement unit-unobservable distribution networks based on network equivalent," Applied Energy, Elsevier, vol. 250(C), pages 302-312.
    19. Klyapovskiy, Sergey & You, Shi & Michiorri, Andrea & Kariniotakis, George & Bindner, Henrik W., 2019. "Incorporating flexibility options into distribution grid reinforcement planning: A techno-economic framework approach," Applied Energy, Elsevier, vol. 254(C).
    20. Perera, A.T.D. & Nik, Vahid M. & Wickramasinghe, P.U. & Scartezzini, Jean-Louis, 2019. "Redefining energy system flexibility for distributed energy system design," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    21. Sulman Shahzad & Elżbieta Jasińska, 2024. "Renewable Revolution: A Review of Strategic Flexibility in Future Power Systems," Sustainability, MDPI, vol. 16(13), pages 1-24, June.
    22. Arul Rajagopalan & Dhivya Swaminathan & Meshal Alharbi & Sudhakar Sengan & Oscar Danilo Montoya & Walid El-Shafai & Mostafa M. Fouda & Moustafa H. Aly, 2022. "Modernized Planning of Smart Grid Based on Distributed Power Generations and Energy Storage Systems Using Soft Computing Methods," Energies, MDPI, vol. 15(23), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Peng & Ji, Haoran & Yu, Hao & Zhao, Jinli & Wang, Chengshan & Song, Guanyu & Wu, Jianzhong, 2019. "Combined decentralized and local voltage control strategy of soft open points in active distribution networks," Applied Energy, Elsevier, vol. 241(C), pages 613-624.
    2. Ji, Haoran & Wang, Chengshan & Li, Peng & Zhao, Jinli & Song, Guanyu & Wu, Jianzhong, 2018. "Quantified flexibility evaluation of soft open points to improve distributed generator penetration in active distribution networks based on difference-of-convex programming," Applied Energy, Elsevier, vol. 218(C), pages 338-348.
    3. Bastami, Houman & Shakarami, Mahmoud Reza & Doostizadeh, Meysam, 2021. "A decentralized cooperative framework for multi-area active distribution network in presence of inter-area soft open points," Applied Energy, Elsevier, vol. 300(C).
    4. Escalera, Alberto & Prodanović, Milan & Castronuovo, Edgardo D. & Roldan-Perez, Javier, 2020. "Contribution of active management technologies to the reliability of power distribution networks," Applied Energy, Elsevier, vol. 267(C).
    5. Ji, Haoran & Wang, Chengshan & Li, Peng & Zhao, Jinli & Song, Guanyu & Ding, Fei & Wu, Jianzhong, 2017. "An enhanced SOCP-based method for feeder load balancing using the multi-terminal soft open point in active distribution networks," Applied Energy, Elsevier, vol. 208(C), pages 986-995.
    6. Wang, Chengshan & Song, Guanyu & Li, Peng & Ji, Haoran & Zhao, Jinli & Wu, Jianzhong, 2017. "Optimal siting and sizing of soft open points in active electrical distribution networks," Applied Energy, Elsevier, vol. 189(C), pages 301-309.
    7. Su, Hongzhi & Wang, Chengshan & Li, Peng & Liu, Zhelin & Yu, Li & Wu, Jianzhong, 2019. "Optimal placement of phasor measurement unit in distribution networks considering the changes in topology," Applied Energy, Elsevier, vol. 250(C), pages 313-322.
    8. Aithal, Avinash & Li, Gen & Wu, Jianzhong & Yu, James, 2018. "Performance of an electrical distribution network with Soft Open Point during a grid side AC fault," Applied Energy, Elsevier, vol. 227(C), pages 262-272.
    9. Deakin, Matthew & Sarantakos, Ilias & Greenwood, David & Bialek, Janusz & Taylor, Phil C. & Walker, Sara, 2023. "Comparative analysis of services from soft open points using cost–benefit analysis," Applied Energy, Elsevier, vol. 333(C).
    10. Bustos, Cristian & Watts, David & Olivares, Daniel, 2019. "The evolution over time of Distributed Energy Resource’s penetration: A robust framework to assess the future impact of prosumage under different tariff designs," Applied Energy, Elsevier, vol. 256(C).
    11. Zhengqi Wang & Haoyu Zhou & Hongyu Su, 2022. "Disturbance Observer-Based Model Predictive Super-Twisting Control for Soft Open Point," Energies, MDPI, vol. 15(10), pages 1-19, May.
    12. Qi, Qi & Wu, Jianzhong & Long, Chao, 2017. "Multi-objective operation optimization of an electrical distribution network with soft open point," Applied Energy, Elsevier, vol. 208(C), pages 734-744.
    13. Irina I. Picioroaga & Andrei M. Tudose & Dorian O. Sidea & Constantin Bulac, 2022. "Supply Restoration in Active Distribution Networks Based on Soft Open Points with Embedded DC Microgrids," Mathematics, MDPI, vol. 10(2), pages 1-21, January.
    14. Bai, Linquan & Jiang, Tao & Li, Fangxing & Chen, Houhe & Li, Xue, 2018. "Distributed energy storage planning in soft open point based active distribution networks incorporating network reconfiguration and DG reactive power capability," Applied Energy, Elsevier, vol. 210(C), pages 1082-1091.
    15. Juan Noh & Seungjun Gham & Myungseok Yoon & Wookyu Chae & Woohyun Kim & Sungyun Choi, 2023. "A Study on a Communication-Based Algorithm to Improve Protection Coordination under High-Impedance Fault in Networked Distribution Systems," Sustainability, MDPI, vol. 15(21), pages 1-19, October.
    16. Ricardo de Oliveira & Leonardo Willer de Oliveira & Edimar José de Oliveira, 2023. "Optimization Approach for Planning Soft Open Points in a MV-Distribution System to Maximize the Hosting Capacity," Energies, MDPI, vol. 16(3), pages 1-22, January.
    17. Zhao, Jinli & Zhang, Mengzhen & Yu, Hao & Ji, Haoran & Song, Guanyu & Li, Peng & Wang, Chengshan & Wu, Jianzhong, 2019. "An islanding partition method of active distribution networks based on chance-constrained programming," Applied Energy, Elsevier, vol. 242(C), pages 78-91.
    18. Ibrahim Diaaeldin & Shady Abdel Aleem & Ahmed El-Rafei & Almoataz Abdelaziz & Ahmed F. Zobaa, 2019. "Optimal Network Reconfiguration in Active Distribution Networks with Soft Open Points and Distributed Generation," Energies, MDPI, vol. 12(21), pages 1-31, November.
    19. Ji, Haoran & Wang, Chengshan & Li, Peng & Song, Guanyu & Wu, Jianzhong, 2018. "SOP-based islanding partition method of active distribution networks considering the characteristics of DG, energy storage system and load," Energy, Elsevier, vol. 155(C), pages 312-325.
    20. Ibrahim Mohamed Diaaeldin & Shady H. E. Abdel Aleem & Ahmed El-Rafei & Almoataz Y. Abdelaziz & Ahmed F. Zobaa, 2020. "Enhancement of Hosting Capacity with Soft Open Points and Distribution System Reconfiguration: Multi-Objective Bilevel Stochastic Optimization," Energies, MDPI, vol. 13(20), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:239:y:2019:i:c:p:706-714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.