IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i23p13053-d687628.html
   My bibliography  Save this article

Parameter Estimation of Static/Dynamic Photovoltaic Models Using a Developed Version of Eagle Strategy Gradient-Based Optimizer

Author

Listed:
  • Abdelhady Ramadan

    (Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt)

  • Salah Kamel

    (Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt)

  • Mohamed H. Hassan

    (Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt)

  • Marcos Tostado-Véliz

    (Electrical Engineering Department, University of Jaen, 23071 Jaén, Spain)

  • Ali M. Eltamaly

    (K.A.CARE Energy Research and Innovation Center at Riyadh, Riyadh 11451, Saudi Arabia
    Sustainable Energy Technologies Center, King Saud University, Riyadh 11421, Saudi Arabia
    Electrical Engineering Department, Mansoura University, Mansoura 35516, Egypt)

Abstract

The global trend towards renewable energy sources, especially solar energy, has had a significant impact on the development of scientific research to manufacture high-performance solar cells. The issue of creating a model that simulates a solar module and extracting its parameter is essential in designing an improved and high performance photovoltaic system. However, the nonlinear nature of the photovoltaic cell increases the challenge in creating this model. The application of optimization algorithms to solve this issue is increased and developed rapidly. In this paper, a developed version of eagle strategy GBO with chaotic (ESCGBO) is proposed to enhance the original GBO performance and its search efficiency in solving difficult optimization problems such as this. In the literature, different PV models are presented, including static and dynamic PV models. Firstly, in order to evaluate the effectiveness of the proposed ESCGBO algorithm, it is executed on the 23 benchmark functions and the obtained results using the proposed algorithm are compared with that obtained using three well-known algorithms, including the original GBO algorithm, the equilibrium optimizer (EO) algorithm, and wild horse optimizer (WHO) algorithm. Furthermore, both of original GBO and developed ESCGBO are applied to estimate the parameters of single and double diode as static models, and integral and fractional models as examples for dynamic models. The results in all applications are evaluated and compared with different recent algorithms. The results analysis confirmed the efficiency, accuracy, and robustness of the proposed algorithm compared with the original one or the recent optimization algorithms.

Suggested Citation

  • Abdelhady Ramadan & Salah Kamel & Mohamed H. Hassan & Marcos Tostado-Véliz & Ali M. Eltamaly, 2021. "Parameter Estimation of Static/Dynamic Photovoltaic Models Using a Developed Version of Eagle Strategy Gradient-Based Optimizer," Sustainability, MDPI, vol. 13(23), pages 1-29, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:23:p:13053-:d:687628
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/23/13053/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/23/13053/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Zhicong & Wu, Lijun & Lin, Peijie & Wu, Yue & Cheng, Shuying, 2016. "Parameters identification of photovoltaic models using hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy," Applied Energy, Elsevier, vol. 182(C), pages 47-57.
    2. E Emary & Hossam M Zawbaa, 2016. "Impact of Chaos Functions on Modern Swarm Optimizers," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-26, July.
    3. Hamza Yapıcı & Nurettin Çetinkaya, 2017. "An Improved Particle Swarm Optimization Algorithm Using Eagle Strategy for Power Loss Minimization," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-11, March.
    4. Xu, Shuhui & Wang, Yong & Wang, Zhi, 2019. "Parameter estimation of proton exchange membrane fuel cells using eagle strategy based on JAYA algorithm and Nelder-Mead simplex method," Energy, Elsevier, vol. 173(C), pages 457-467.
    5. Mayer, Martin János & Gróf, Gyula, 2021. "Extensive comparison of physical models for photovoltaic power forecasting," Applied Energy, Elsevier, vol. 283(C).
    6. Suprava Chakraborty & Sumit Verma & Aprajita Salgotra & Rajvikram Madurai Elavarasan & Devaraj Elangovan & Lucian Mihet-Popa, 2021. "Solar-Based DG Allocation Using Harris Hawks Optimization While Considering Practical Aspects," Energies, MDPI, vol. 14(16), pages 1-26, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Durgamadhab Swain & Meera Viswavandya & Ritesh Dash & Kalvakurthi Jyotheeswara Reddy & Dhanamjayulu Chittathuru & Arunkumar Gopal & Baseem Khan & Manam Ravindra, 2023. "P2P Coordinated Control between SPV and STATCOM in a Microgrid for Power Quality Compensation Using LSTM–Genetic Algorithm," Sustainability, MDPI, vol. 15(14), pages 1-18, July.
    2. Ahmed. H. A. Elkasem & Salah Kamel & Mohamed H. Hassan & Mohamed Khamies & Emad M. Ahmed, 2022. "An Eagle Strategy Arithmetic Optimization Algorithm for Frequency Stability Enhancement Considering High Renewable Power Penetration and Time-Varying Load," Mathematics, MDPI, vol. 10(6), pages 1-38, March.
    3. Bushra Shakir Mahmood & Nazar K. Hussein & Mansourah Aljohani & Mohammed Qaraad, 2023. "A Modified Gradient Search Rule Based on the Quasi-Newton Method and a New Local Search Technique to Improve the Gradient-Based Algorithm: Solar Photovoltaic Parameter Extraction," Mathematics, MDPI, vol. 11(19), pages 1-40, October.
    4. El-Sattar, Hoda Abd & Kamel, Salah & Hassan, Mohamed H. & Jurado, Francisco, 2022. "An effective optimization strategy for design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 260(C).
    5. Xiaofei Li & Zhao Wang & Yinnan Liu & Haifeng Wang & Liusheng Pei & An Wu & Shuang Sun & Yongjun Lian & Honglu Zhu, 2023. "A Novel Operating State Evaluation Method for Photovoltaic Strings Based on TOPSIS and Its Application," Sustainability, MDPI, vol. 15(9), pages 1-16, April.
    6. Abdelhady Ramadan & Salah Kamel & I. Hamdan & Ahmed M. Agwa, 2022. "A Novel Intelligent ANFIS for the Dynamic Model of Photovoltaic Systems," Mathematics, MDPI, vol. 10(8), pages 1-14, April.
    7. Ramakanta Jena & Ritesh Dash & Kalvakurthi Jyotheeswara Reddy & Prasanta Kumar Parida & Chittathuru Dhanamjayulu & Sarat Chandra Swain & S. M. Muyeen, 2023. "Enhancing Efficiency of Grid-Connected Solar Photovoltaic System with Particle Swarm Optimization & Long Short-Term Memory Hybrid Technique," Sustainability, MDPI, vol. 15(11), pages 1-24, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed. H. A. Elkasem & Salah Kamel & Mohamed H. Hassan & Mohamed Khamies & Emad M. Ahmed, 2022. "An Eagle Strategy Arithmetic Optimization Algorithm for Frequency Stability Enhancement Considering High Renewable Power Penetration and Time-Varying Load," Mathematics, MDPI, vol. 10(6), pages 1-38, March.
    2. Mayer, Martin János & Yang, Dazhi & Szintai, Balázs, 2023. "Comparing global and regional downscaled NWP models for irradiance and photovoltaic power forecasting: ECMWF versus AROME," Applied Energy, Elsevier, vol. 352(C).
    3. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
    4. Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Mohamed Trabelsi & Shady S. Refaat & Fakhreddine S. Oueslati, 2021. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements," Energies, MDPI, vol. 14(13), pages 1-20, July.
    5. Mayer, Martin János & Yang, Dazhi, 2023. "Calibration of deterministic NWP forecasts and its impact on verification," International Journal of Forecasting, Elsevier, vol. 39(2), pages 981-991.
    6. Tong Kang & Jiangang Yao & Min Jin & Shengjie Yang & ThanhLong Duong, 2018. "A Novel Improved Cuckoo Search Algorithm for Parameter Estimation of Photovoltaic (PV) Models," Energies, MDPI, vol. 11(5), pages 1-31, April.
    7. Yu, Min & Niu, Dongxiao & Wang, Keke & Du, Ruoyun & Yu, Xiaoyu & Sun, Lijie & Wang, Feiran, 2023. "Short-term photovoltaic power point-interval forecasting based on double-layer decomposition and WOA-BiLSTM-Attention and considering weather classification," Energy, Elsevier, vol. 275(C).
    8. Cabello-López, Tomás & Carranza-García, Manuel & Riquelme, José C. & García-Gutiérrez, Jorge, 2023. "Forecasting solar energy production in Spain: A comparison of univariate and multivariate models at the national level," Applied Energy, Elsevier, vol. 350(C).
    9. Muhyaddin Rawa & Abdullah Abusorrah & Yusuf Al-Turki & Martin Calasan & Mihailo Micev & Ziad M. Ali & Saad Mekhilef & Hussain Bassi & Hatem Sindi & Shady H. E. Abdel Aleem, 2022. "Estimation of Parameters of Different Equivalent Circuit Models of Solar Cells and Various Photovoltaic Modules Using Hybrid Variants of Honey Badger Algorithm and Artificial Gorilla Troops Optimizer," Mathematics, MDPI, vol. 10(7), pages 1-31, March.
    10. Abbassi, Rabeh & Abbassi, Abdelkader & Jemli, Mohamed & Chebbi, Souad, 2018. "Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 453-474.
    11. Anderson Mitterhofer Iung & Fernando Luiz Cyrino Oliveira & André Luís Marques Marcato, 2023. "A Review on Modeling Variable Renewable Energy: Complementarity and Spatial–Temporal Dependence," Energies, MDPI, vol. 16(3), pages 1-24, January.
    12. Grzegorz Woroniak & Joanna Piotrowska-Woroniak & Anna Woroniak & Edyta Owczarek & Krystyna Giza, 2024. "Analysis of the Hybrid Power-Heating System in a Single-Family Building, along with Ecological Aspects of the Operation," Energies, MDPI, vol. 17(11), pages 1-24, May.
    13. Nunes, H.G.G. & Pombo, J.A.N. & Mariano, S.J.P.S. & Calado, M.R.A. & Felippe de Souza, J.A.M., 2018. "A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization," Applied Energy, Elsevier, vol. 211(C), pages 774-791.
    14. Huang, Songtao & Zhou, Qingguo & Shen, Jun & Zhou, Heng & Yong, Binbin, 2024. "Multistage spatio-temporal attention network based on NODE for short-term PV power forecasting," Energy, Elsevier, vol. 290(C).
    15. Hong Wu & Haipeng Liu & Huaiping Jin & Yanping He, 2024. "Ultra-Short-Term Photovoltaic Power Prediction by NRGA-BiLSTM Considering Seasonality and Periodicity of Data," Energies, MDPI, vol. 17(18), pages 1-19, September.
    16. Huang, Yan & Ju, Yuntao & Ma, Kang & Short, Michael & Chen, Tao & Zhang, Ruosi & Lin, Yi, 2022. "Three-phase optimal power flow for networked microgrids based on semidefinite programming convex relaxation," Applied Energy, Elsevier, vol. 305(C).
    17. Cui, Shuhui & Lyu, Shouping & Ma, Yongzhi & Wang, Kai, 2024. "Improved informer PV power short-term prediction model based on weather typing and AHA-VMD-MPE," Energy, Elsevier, vol. 307(C).
    18. Mayer, Martin János & Yang, Dazhi, 2023. "Pairing ensemble numerical weather prediction with ensemble physical model chain for probabilistic photovoltaic power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    19. Ian B. Benitez & Jessa A. Ibañez & Cenon III D. Lumabad & Jayson M. Cañete & Jeark A. Principe, 2023. "Day-Ahead Hourly Solar Photovoltaic Output Forecasting Using SARIMAX, Long Short-Term Memory, and Extreme Gradient Boosting: Case of the Philippines," Energies, MDPI, vol. 16(23), pages 1-21, November.
    20. Chin, Vun Jack & Salam, Zainal, 2019. "A New Three-point-based Approach for the Parameter Extraction of Photovoltaic Cells," Applied Energy, Elsevier, vol. 237(C), pages 519-533.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:23:p:13053-:d:687628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.