IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5631-d435906.html
   My bibliography  Save this article

Reliability Assessment of Wind-Solar PV Integrated Distribution System Using Electrical Loss Minimization Technique

Author

Listed:
  • Sachin Kumar

    (Department of Electrical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India)

  • Kumari Sarita

    (Department of Electrical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India)

  • Akanksha Singh S Vardhan

    (Department of Electrical Engineering, Shri G.S. Institute of Technology and Science, Indore 452003, Madhya Pradesh, India)

  • Rajvikram Madurai Elavarasan

    (Electrical and Automotive Parts Manufacturing Unit, AA Industries, Chennai 600123, Tamilnadu, India)

  • R. K. Saket

    (Department of Electrical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India)

  • Narottam Das

    (School of Engineering and Technology, Central Queensland University, Melbourne, VIC 3000, Australia
    Centre for Intelligent Systems, School of Engineering and Technology, Central Queensland University, Brisbane, QLD 4000, Australia)

Abstract

This article presents the Reliability Assessment (RA) of renewable energy interfaced Electrical Distribution System (EDS) considering the electrical loss minimization (ELM). ELM aims at minimizing the detrimental effect of real power and reactive power losses in the EDS. Some techniques, including integration of Renewable Energy Source (RES), network reconfiguration, and expansion planning, have been suggested in the literature for achieving ELM. The optimal RES integration (also referred to as Distributed Generation (DG)) is one of the globally accepted techniques to achieve minimization of electrical losses. Therefore, first, the locations to accommodate these DGs are obtained by implementing two indexes, namely Index-1 for single DG and Index-2 for multiple DGs. Second, a Constriction Factor-based Particle Swarm Optimization (CF-PSO) technique is applied to obtain an optimal sizing(s) of the DGs for achieving the ELM. Third, the RA of the EDS is performed using the optimal location(s) and sizing(s) of the RESs (i.e., Solar photovoltaic (SPV) and Wind Turbine Generator (WTG)). Moreover, a Battery Storage System (BSS) is also incorporated optimally with the RESs to further achieve the ELM and to improve the system’s reliability. The result analysis is performed by considering the power output rating of WTG-GE’s V162-5.6MW (IECS), SPV-Sunpower’s SPR-P5-545-UPP, and BSS-Freqcon’s BESS-3000 (i.e., Battery Energy Storage System 3000), which are provided by the corresponding manufacturers. According to the outcomes of the study, the results are found to be coherent with those obtained using other techniques that are available in the literature. These results are considered for the RA of the EDS. RA is further analyzed considering the uncertainties in reliability data of WTG and SPV, including the failure rate and the repair time. The RA of optimally placed DGs is performed by considering the electrical loss minimization. It is inferred that the reliability of the EDS improves by contemplating suitable reliability data of optimally integrated DGs.

Suggested Citation

  • Sachin Kumar & Kumari Sarita & Akanksha Singh S Vardhan & Rajvikram Madurai Elavarasan & R. K. Saket & Narottam Das, 2020. "Reliability Assessment of Wind-Solar PV Integrated Distribution System Using Electrical Loss Minimization Technique," Energies, MDPI, vol. 13(21), pages 1-30, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5631-:d:435906
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5631/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5631/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Singh, Rashmi & Sharma, Madhu & Rawat, Rahul & Banerjee, Chandan, 2018. "An assessment of series resistance estimation techniques for different silicon based SPV modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 199-216.
    2. Rajvikram Madurai Elavarasan & Leoponraj Selvamanohar & Kannadasan Raju & Raghavendra Rajan Vijayaraghavan & Ramkumar Subburaj & Mohammad Nurunnabi & Irfan Ahmad Khan & Syed Afridhis & Akshaya Harihar, 2020. "A Holistic Review of the Present and Future Drivers of the Renewable Energy Mix in Maharashtra, State of India," Sustainability, MDPI, vol. 12(16), pages 1-33, August.
    3. Rajvikram Madurai Elavarasan & Aritra Ghosh & Tapas K. Mallick & Apoorva Krishnamurthy & Meenal Saravanan, 2019. "Investigations on Performance Enhancement Measures of the Bidirectional Converter in PV–Wind Interconnected Microgrid System," Energies, MDPI, vol. 12(14), pages 1-22, July.
    4. Tehzeeb-ul Hassan & Rabeh Abbassi & Houssem Jerbi & Kashif Mehmood & Muhammad Faizan Tahir & Khalid Mehmood Cheema & Rajvikram Madurai Elavarasan & Farman Ali & Irfan Ahmad Khan, 2020. "A Novel Algorithm for MPPT of an Isolated PV System Using Push Pull Converter with Fuzzy Logic Controller," Energies, MDPI, vol. 13(15), pages 1-20, August.
    5. Vasiliki Vita, 2017. "Development of a Decision-Making Algorithm for the Optimum Size and Placement of Distributed Generation Units in Distribution Networks," Energies, MDPI, vol. 10(9), pages 1-13, September.
    6. Arooj Tariq Kiani & Muhammad Faisal Nadeem & Ali Ahmed & Irfan Khan & Rajvikram Madurai Elavarasan & Narottam Das, 2020. "Optimal PV Parameter Estimation via Double Exponential Function-Based Dynamic Inertia Weight Particle Swarm Optimization," Energies, MDPI, vol. 13(15), pages 1-26, August.
    7. Minh Quan Duong & Thai Dinh Pham & Thang Trung Nguyen & Anh Tuan Doan & Hai Van Tran, 2019. "Determination of Optimal Location and Sizing of Solar Photovoltaic Distribution Generation Units in Radial Distribution Systems," Energies, MDPI, vol. 12(1), pages 1-24, January.
    8. Krishnamoorthy R & Udhayakumar K & Kannadasan Raju & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2020. "An Assessment of Onshore and Offshore Wind Energy Potential in India Using Moth Flame Optimization," Energies, MDPI, vol. 13(12), pages 1-41, June.
    9. Mohsin Shahzad & Ishtiaq Ahmad & Wolfgang Gawlik & Peter Palensky, 2016. "Load Concentration Factor Based Analytical Method for Optimal Placement of Multiple Distribution Generators for Loss Minimization and Voltage Profile Improvement," Energies, MDPI, vol. 9(4), pages 1-21, April.
    10. Hamouda, Yasmina Abdellatif, 2012. "Wind energy in Egypt: Economic feasibility for Cairo," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3312-3319.
    11. Nallapaneni Manoj Kumar & Shauhrat S. Chopra & Aneesh A. Chand & Rajvikram Madurai Elavarasan & G.M. Shafiullah, 2020. "Hybrid Renewable Energy Microgrid for a Residential Community: A Techno-Economic and Environmental Perspective in the Context of the SDG7," Sustainability, MDPI, vol. 12(10), pages 1-30, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edy Quintana & Esteban Inga, 2022. "Optimal Reconfiguration of Electrical Distribution System Using Heuristic Methods with Geopositioning Constraints," Energies, MDPI, vol. 15(15), pages 1-20, July.
    2. Mirosław Kornatka & Anna Gawlak, 2021. "An Analysis of the Operation of Distribution Networks Using Kernel Density Estimators," Energies, MDPI, vol. 14(21), pages 1-12, October.
    3. Minsheng Yang & Jianqi Li & Rui Du & Jianying Li & Jian Sun & Xiaofang Yuan & Jiazhu Xu & Shifu Huang, 2022. "Reactive Power Optimization Model for Distribution Networks Based on the Second-Order Cone and Interval Optimization," Energies, MDPI, vol. 15(6), pages 1-16, March.
    4. Massimiliano Luna, 2022. "High-Efficiency and High-Performance Power Electronics for Power Grids and Electrical Drives," Energies, MDPI, vol. 15(16), pages 1-6, August.
    5. Stanisław Mikulski & Andrzej Tomczewski, 2021. "Use of Energy Storage to Reduce Transmission Losses in Meshed Power Distribution Networks," Energies, MDPI, vol. 14(21), pages 1-20, November.
    6. Miroslaw Parol & Jacek Wasilewski & Tomasz Wojtowicz & Bartlomiej Arendarski & Przemyslaw Komarnicki, 2022. "Reliability Analysis of MV Electric Distribution Networks Including Distributed Generation and ICT Infrastructure," Energies, MDPI, vol. 15(14), pages 1-34, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mageswaran Rengasamy & Sivasankar Gangatharan & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2020. "The Motivation for Incorporation of Microgrid Technology in Rooftop Solar Photovoltaic Deployment to Enhance Energy Economics," Sustainability, MDPI, vol. 12(24), pages 1-27, December.
    2. Mohanasundaram Anthony & Valsalal Prasad & Kannadasan Raju & Mohammed H. Alsharif & Zong Woo Geem & Junhee Hong, 2020. "Design of Rotor Blades for Vertical Axis Wind Turbine with Wind Flow Modifier for Low Wind Profile Areas," Sustainability, MDPI, vol. 12(19), pages 1-26, September.
    3. Vijayaraja Loganathan & Dhanasekar Ravikumar & Rupa Kesavan & Kanakasri Venkatesan & Raadha Saminathan & Raju Kannadasan & Mahalingam Sudhakaran & Mohammed H. Alsharif & Zong Woo Geem & Junhee Hong, 2022. "A Case Study on Renewable Energy Sources, Power Demand, and Policies in the States of South India—Development of a Thermoelectric Model," Sustainability, MDPI, vol. 14(14), pages 1-29, July.
    4. Varadharajan Sankaralingam Sriraja Balaguru & Nesamony Jothi Swaroopan & Kannadasan Raju & Mohammed H. Alsharif & Mun-Kyeom Kim, 2021. "Techno-Economic Investigation of Wind Energy Potential in Selected Sites with Uncertainty Factors," Sustainability, MDPI, vol. 13(4), pages 1-31, February.
    5. Oludamilare Bode Adewuyi & Ayooluwa Peter Adeagbo & Isaiah Gbadegesin Adebayo & Harun Or Rashid Howlader & Yanxia Sun, 2021. "Modified Analytical Approach for PV-DGs Integration into a Radial Distribution Network Considering Loss Sensitivity and Voltage Stability," Energies, MDPI, vol. 14(22), pages 1-20, November.
    6. Habib Ur Rehman & Arif Hussain & Waseem Haider & Sayyed Ahmad Ali & Syed Ali Abbas Kazmi & Muhammad Huzaifa, 2023. "Optimal Planning of Solar Photovoltaic (PV) and Wind-Based DGs for Achieving Techno-Economic Objectives across Various Load Models," Energies, MDPI, vol. 16(5), pages 1-38, March.
    7. Siddik Shakul Hameed & Ramesh Ramadoss & Kannadasan Raju & GM Shafiullah, 2022. "A Framework-Based Wind Forecasting to Assess Wind Potential with Improved Grey Wolf Optimization and Support Vector Regression," Sustainability, MDPI, vol. 14(7), pages 1-29, April.
    8. Senthilkumar Subramanian & Chandramohan Sankaralingam & Rajvikram Madurai Elavarasan & Raghavendra Rajan Vijayaraghavan & Kannadasan Raju & Lucian Mihet-Popa, 2021. "An Evaluation on Wind Energy Potential Using Multi-Objective Optimization Based Non-Dominated Sorting Genetic Algorithm III," Sustainability, MDPI, vol. 13(1), pages 1-29, January.
    9. Madurai Elavarasan, Rajvikram & Pugazhendhi, Rishi & Jamal, Taskin & Dyduch, Joanna & Arif, M.T. & Manoj Kumar, Nallapaneni & Shafiullah, GM & Chopra, Shauhrat S. & Nadarajah, Mithulananthan, 2021. "Envisioning the UN Sustainable Development Goals (SDGs) through the lens of energy sustainability (SDG 7) in the post-COVID-19 world," Applied Energy, Elsevier, vol. 292(C).
    10. Gnana Swathika Odiyur Vathanam & Karthikeyan Kalyanasundaram & Rajvikram Madurai Elavarasan & Shabir Hussain Khahro & Umashankar Subramaniam & Rishi Pugazhendhi & Mehana Ramesh & Rishi Murugesan Gopal, 2021. "A Review on Effective Use of Daylight Harvesting Using Intelligent Lighting Control Systems for Sustainable Office Buildings in India," Sustainability, MDPI, vol. 13(9), pages 1-32, April.
    11. Kadir Doğanşahin & Bedri Kekezoğlu & Recep Yumurtacı & Ozan Erdinç & João P. S. Catalão, 2018. "Maximum Permissible Integration Capacity of Renewable DG Units Based on System Loads," Energies, MDPI, vol. 11(1), pages 1-16, January.
    12. Rajvikram Madurai Elavarasan & Leoponraj Selvamanohar & Kannadasan Raju & Raghavendra Rajan Vijayaraghavan & Ramkumar Subburaj & Mohammad Nurunnabi & Irfan Ahmad Khan & Syed Afridhis & Akshaya Harihar, 2020. "A Holistic Review of the Present and Future Drivers of the Renewable Energy Mix in Maharashtra, State of India," Sustainability, MDPI, vol. 12(16), pages 1-33, August.
    13. Mani Rajalakshmi & Sankaralingam Chandramohan & Raju Kannadasan & Mohammed H. Alsharif & Mun-Kyeom Kim & Jamel Nebhen, 2021. "Design and Validation of BAT Algorithm-Based Photovoltaic System Using Simplified High Gain Quasi Boost Inverter," Energies, MDPI, vol. 14(4), pages 1-24, February.
    14. Venkatraman Indrajayanthan & Nalin Kant Mohanty & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2022. "Investigation on Current and Prospective Energy Transition Scenarios in Indian Landscape Using Integrated SWOT-MCDA Methodology," Sustainability, MDPI, vol. 14(9), pages 1-31, April.
    15. Liu Lu & Wei Wei, 2023. "Influence of Public Sports Services on Residents’ Mental Health at Communities Level: New Insights from China," IJERPH, MDPI, vol. 20(2), pages 1-14, January.
    16. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    17. Hendra Hendra & Dhimas Satria & Hernadewita Hernadewita & Yozerizal Yozerizal & Frengki Hardian & Ahmed M. Galal, 2023. "Performance of Generator Translation and Rotation on Stroke Length Drive of the Two-Rod Mechanism in Renewable Energy Power Plant," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
    18. Jingjing Tu & Zhongdong Yin & Yonghai Xu, 2018. "Study on the Evaluation Index System and Evaluation Method of Voltage Stability of Distribution Network with High DG Penetration," Energies, MDPI, vol. 11(1), pages 1-15, January.
    19. Ayman Al-Quraan & Muhannad Al-Qaisi, 2021. "Modelling, Design and Control of a Standalone Hybrid PV-Wind Micro-Grid System," Energies, MDPI, vol. 14(16), pages 1-23, August.
    20. Jan K. Kazak & Joanna A. Kamińska & Rafał Madej & Marta Bochenkiewicz, 2020. "Where Renewable Energy Sources Funds are Invested? Spatial Analysis of Energy Production Potential and Public Support," Energies, MDPI, vol. 13(21), pages 1-26, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5631-:d:435906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.