IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v241y2019icp613-624.html
   My bibliography  Save this article

Combined decentralized and local voltage control strategy of soft open points in active distribution networks

Author

Listed:
  • Li, Peng
  • Ji, Haoran
  • Yu, Hao
  • Zhao, Jinli
  • Wang, Chengshan
  • Song, Guanyu
  • Wu, Jianzhong

Abstract

With the integration of high shares of distributed generators (DGs), it is increasingly difficult to cope with the voltage violations and puts forward a higher requirement for the operational flexibility in active distribution networks (ADNs). Soft open point (SOP) can realize accurate power flow control and continuous voltage regulation, which is usually operated by the centralized control strategy. However, the heavy burden of communication and complex global optimization process hinder its application on fast voltage control. This paper proposes a combined decentralized and local voltage control strategy of SOPs to rapidly cope with the frequent voltage fluctuations. Based on the dynamic network partition results, the decentralized optimization is applied to regulate active power transmission of SOPs among the connected areas. The Q-V control curve is optimally tuned to locally regulate the reactive power outputs of SOPs by using the intra-area information. Compared to the widely-used centralized strategy, the proposed combined control strategy of SOPs can effectively reduce the communication and computational burden with acceptable voltage control performance. Finally, the effectiveness of the proposed control strategy of SOPs is validated on the modified PG&E 69-node distribution system and modified IEEE 123-node distribution system.

Suggested Citation

  • Li, Peng & Ji, Haoran & Yu, Hao & Zhao, Jinli & Wang, Chengshan & Song, Guanyu & Wu, Jianzhong, 2019. "Combined decentralized and local voltage control strategy of soft open points in active distribution networks," Applied Energy, Elsevier, vol. 241(C), pages 613-624.
  • Handle: RePEc:eee:appene:v:241:y:2019:i:c:p:613-624
    DOI: 10.1016/j.apenergy.2019.03.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919304295
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.03.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Long, Chao & Wu, Jianzhong & Thomas, Lee & Jenkins, Nick, 2016. "Optimal operation of soft open points in medium voltage electrical distribution networks with distributed generation," Applied Energy, Elsevier, vol. 184(C), pages 427-437.
    2. Ji, Haoran & Wang, Chengshan & Li, Peng & Song, Guanyu & Yu, Hao & Wu, Jianzhong, 2019. "Quantified analysis method for operational flexibility of active distribution networks with high penetration of distributed generators," Applied Energy, Elsevier, vol. 239(C), pages 706-714.
    3. Ji, Haoran & Wang, Chengshan & Li, Peng & Zhao, Jinli & Song, Guanyu & Wu, Jianzhong, 2018. "Quantified flexibility evaluation of soft open points to improve distributed generator penetration in active distribution networks based on difference-of-convex programming," Applied Energy, Elsevier, vol. 218(C), pages 338-348.
    4. Das, Choton K. & Bass, Octavian & Kothapalli, Ganesh & Mahmoud, Thair S. & Habibi, Daryoush, 2018. "Optimal placement of distributed energy storage systems in distribution networks using artificial bee colony algorithm," Applied Energy, Elsevier, vol. 232(C), pages 212-228.
    5. Wang, Chengshan & Song, Guanyu & Li, Peng & Ji, Haoran & Zhao, Jinli & Wu, Jianzhong, 2017. "Optimal siting and sizing of soft open points in active electrical distribution networks," Applied Energy, Elsevier, vol. 189(C), pages 301-309.
    6. Cao, Wanyu & Wu, Jianzhong & Jenkins, Nick & Wang, Chengshan & Green, Timothy, 2016. "Benefits analysis of Soft Open Points for electrical distribution network operation," Applied Energy, Elsevier, vol. 165(C), pages 36-47.
    7. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2014. "Integration of PV and BES units in commercial distribution systems considering energy loss and voltage stability," Applied Energy, Elsevier, vol. 113(C), pages 1162-1170.
    8. Ji, Haoran & Wang, Chengshan & Li, Peng & Song, Guanyu & Wu, Jianzhong, 2018. "SOP-based islanding partition method of active distribution networks considering the characteristics of DG, energy storage system and load," Energy, Elsevier, vol. 155(C), pages 312-325.
    9. Cao, Wanyu & Wu, Jianzhong & Jenkins, Nick & Wang, Chengshan & Green, Timothy, 2016. "Operating principle of Soft Open Points for electrical distribution network operation," Applied Energy, Elsevier, vol. 164(C), pages 245-257.
    10. Ji, Haoran & Wang, Chengshan & Li, Peng & Zhao, Jinli & Song, Guanyu & Ding, Fei & Wu, Jianzhong, 2018. "A centralized-based method to determine the local voltage control strategies of distributed generator operation in active distribution networks," Applied Energy, Elsevier, vol. 228(C), pages 2024-2036.
    11. Xu, Xu & Li, Jiayong & Xu, Zhao & Zhao, Jian & Lai, Chun Sing, 2019. "Enhancing photovoltaic hosting capacity—A stochastic approach to optimal planning of static var compensator devices in distribution networks," Applied Energy, Elsevier, vol. 238(C), pages 952-962.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Sirui & Li, Peng & Ji, Haoran & Yu, Hao & Yan, Jinyue & Wu, Jianzhong & Wang, Chengshan, 2021. "Operational flexibility of active distribution networks with the potential from data centers," Applied Energy, Elsevier, vol. 293(C).
    2. Wu, Wei & Li, Peng & Fu, Xiaopeng & Yan, Jinyue & Wang, Chengshan, 2022. "Flexible Shifted-Frequency analysis for Multi-Timescale simulations of active distribution networks," Applied Energy, Elsevier, vol. 321(C).
    3. Ma, Wei & Wang, Wei & Chen, Zhe & Wu, Xuezhi & Hu, Ruonan & Tang, Fen & Zhang, Weige, 2021. "Voltage regulation methods for active distribution networks considering the reactive power optimization of substations," Applied Energy, Elsevier, vol. 284(C).
    4. Husam A. Ramadan & Spyros Skarvelis-Kazakos, 2022. "DC Soft Open Points for Resilient and Reconfigurable DC Distribution Networks," Energies, MDPI, vol. 15(16), pages 1-23, August.
    5. Guo Xinming & Huo Qunhai & Wei Tongzhen & Yin Jingyuan, 2020. "A Local Control Strategy for Distributed Energy Fluctuation Suppression Based on Soft Open Point," Energies, MDPI, vol. 13(6), pages 1-15, March.
    6. Hongtao Li & Zijin Li & Bo Wang & Kai Sun, 2024. "Stochastic Optimal Operation of SOP-Assisted Active Distribution Networks with High Penetration of Renewable Energy Sources," Sustainability, MDPI, vol. 16(13), pages 1-14, July.
    7. Bastami, Houman & Shakarami, Mahmoud Reza & Doostizadeh, Meysam, 2021. "A decentralized cooperative framework for multi-area active distribution network in presence of inter-area soft open points," Applied Energy, Elsevier, vol. 300(C).
    8. Tsao, Yu-Chung & Beyene, Tsehaye Dedimas & Thanh, Vo-Van & Gebeyehu, Sisay Geremew & Kuo, Tsai-Chi, 2022. "Power distribution network design considering the distributed generations and differential and dynamic pricing," Energy, Elsevier, vol. 241(C).
    9. Kang, Wenfa & Chen, Minyou & Guan, Yajuan & Wei, Baoze & Vasquez Q., Juan C. & Guerrero, Josep M., 2022. "Event-triggered distributed voltage regulation by heterogeneous BESS in low-voltage distribution networks," Applied Energy, Elsevier, vol. 312(C).
    10. Jin, Xiaolong & Wu, Qiuwei & Jia, Hongjie, 2020. "Local flexibility markets: Literature review on concepts, models and clearing methods," Applied Energy, Elsevier, vol. 261(C).
    11. Jude Suchithra & Amin Rajabi & Duane A. Robinson, 2024. "Enhancing PV Hosting Capacity of Electricity Distribution Networks Using Deep Reinforcement Learning-Based Coordinated Voltage Control," Energies, MDPI, vol. 17(20), pages 1-27, October.
    12. Xu Tang & Liang Qin & Zhichun Yang & Xiangling He & Huaidong Min & Sihan Zhou & Kaipei Liu, 2023. "Optimal Scheduling of AC–DC Hybrid Distribution Network Considering the Control Mode of a Converter Station," Sustainability, MDPI, vol. 15(11), pages 1-17, May.
    13. Eshan Karunarathne & Jagadeesh Pasupuleti & Janaka Ekanayake & Dilini Almeida, 2021. "The Optimal Placement and Sizing of Distributed Generation in an Active Distribution Network with Several Soft Open Points," Energies, MDPI, vol. 14(4), pages 1-20, February.
    14. Liang Zhang & Fan Yang & Dawei Yan & Guangchao Qian & Juan Li & Xueya Shi & Jing Xu & Mingjiang Wei & Haoran Ji & Hao Yu, 2024. "Multi-Agent Deep Reinforcement Learning-Based Distributed Voltage Control of Flexible Distribution Networks with Soft Open Points," Energies, MDPI, vol. 17(21), pages 1-19, October.
    15. Ibrahim Diaaeldin & Shady Abdel Aleem & Ahmed El-Rafei & Almoataz Abdelaziz & Ahmed F. Zobaa, 2019. "Optimal Network Reconfiguration in Active Distribution Networks with Soft Open Points and Distributed Generation," Energies, MDPI, vol. 12(21), pages 1-31, November.
    16. Deakin, Matthew & Sarantakos, Ilias & Greenwood, David & Bialek, Janusz & Taylor, Phil C. & Walker, Sara, 2023. "Comparative analysis of services from soft open points using cost–benefit analysis," Applied Energy, Elsevier, vol. 333(C).
    17. Mohammed Alshehri & Jin Yang, 2024. "Voltage Optimization in Active Distribution Networks—Utilizing Analytical and Computational Approaches in High Renewable Energy Penetration Environments," Energies, MDPI, vol. 17(5), pages 1-33, March.
    18. Zhang, Bin & Hu, Weihao & Ghias, Amer M.Y.M. & Xu, Xiao & Chen, Zhe, 2022. "Multi-agent deep reinforcement learning-based coordination control for grid-aware multi-buildings," Applied Energy, Elsevier, vol. 328(C).
    19. Zhichun Yang & Fan Yang & Huaidong Min & Yu Shen & Xu Tang & Yun Hong & Liang Qin, 2023. "A Local Control Strategy for Voltage Fluctuation Suppression in a Flexible Interconnected Distribution Station Area Based on Soft Open Point," Sustainability, MDPI, vol. 15(5), pages 1-13, March.
    20. Qiu, Rui & Liao, Qi & Yan, Jie & Yan, Yamin & Guo, Zhichao & Liang, Yongtu & Zhang, Haoran, 2021. "The coupling impact of subsystem interconnection and demand response on the distributed energy systems: A case study of the composite community in China," Energy, Elsevier, vol. 228(C).
    21. Jude Suchithra & Duane Robinson & Amin Rajabi, 2023. "Hosting Capacity Assessment Strategies and Reinforcement Learning Methods for Coordinated Voltage Control in Electricity Distribution Networks: A Review," Energies, MDPI, vol. 16(5), pages 1-28, March.
    22. Ruonan Hu & Wei Wang & Zhe Chen & Xuezhi Wu & Long Jing & Wei Ma & Guohong Zeng, 2020. "Coordinated Voltage Regulation Methods in Active Distribution Networks with Soft Open Points," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    23. Lazo, Joaquín & Watts, David, 2024. "Stochastic model for active distribution networks planning: An analysis of the combination of active network management schemes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji, Haoran & Wang, Chengshan & Li, Peng & Song, Guanyu & Yu, Hao & Wu, Jianzhong, 2019. "Quantified analysis method for operational flexibility of active distribution networks with high penetration of distributed generators," Applied Energy, Elsevier, vol. 239(C), pages 706-714.
    2. Bastami, Houman & Shakarami, Mahmoud Reza & Doostizadeh, Meysam, 2021. "A decentralized cooperative framework for multi-area active distribution network in presence of inter-area soft open points," Applied Energy, Elsevier, vol. 300(C).
    3. Li, Peng & Ji, Jie & Ji, Haoran & Song, Guanyu & Wang, Chengshan & Wu, Jianzhong, 2020. "Self-healing oriented supply restoration method based on the coordination of multiple SOPs in active distribution networks," Energy, Elsevier, vol. 195(C).
    4. Ji, Haoran & Wang, Chengshan & Li, Peng & Zhao, Jinli & Song, Guanyu & Wu, Jianzhong, 2018. "Quantified flexibility evaluation of soft open points to improve distributed generator penetration in active distribution networks based on difference-of-convex programming," Applied Energy, Elsevier, vol. 218(C), pages 338-348.
    5. Zhao, Jinli & Zhang, Mengzhen & Yu, Hao & Ji, Haoran & Song, Guanyu & Li, Peng & Wang, Chengshan & Wu, Jianzhong, 2019. "An islanding partition method of active distribution networks based on chance-constrained programming," Applied Energy, Elsevier, vol. 242(C), pages 78-91.
    6. Ibrahim Diaaeldin & Shady Abdel Aleem & Ahmed El-Rafei & Almoataz Abdelaziz & Ahmed F. Zobaa, 2019. "Optimal Network Reconfiguration in Active Distribution Networks with Soft Open Points and Distributed Generation," Energies, MDPI, vol. 12(21), pages 1-31, November.
    7. Escalera, Alberto & Prodanović, Milan & Castronuovo, Edgardo D. & Roldan-Perez, Javier, 2020. "Contribution of active management technologies to the reliability of power distribution networks," Applied Energy, Elsevier, vol. 267(C).
    8. Ji, Haoran & Wang, Chengshan & Li, Peng & Zhao, Jinli & Song, Guanyu & Ding, Fei & Wu, Jianzhong, 2017. "An enhanced SOCP-based method for feeder load balancing using the multi-terminal soft open point in active distribution networks," Applied Energy, Elsevier, vol. 208(C), pages 986-995.
    9. Wang, Chengshan & Song, Guanyu & Li, Peng & Ji, Haoran & Zhao, Jinli & Wu, Jianzhong, 2017. "Optimal siting and sizing of soft open points in active electrical distribution networks," Applied Energy, Elsevier, vol. 189(C), pages 301-309.
    10. Irina I. Picioroaga & Andrei M. Tudose & Dorian O. Sidea & Constantin Bulac, 2022. "Supply Restoration in Active Distribution Networks Based on Soft Open Points with Embedded DC Microgrids," Mathematics, MDPI, vol. 10(2), pages 1-21, January.
    11. Bai, Linquan & Jiang, Tao & Li, Fangxing & Chen, Houhe & Li, Xue, 2018. "Distributed energy storage planning in soft open point based active distribution networks incorporating network reconfiguration and DG reactive power capability," Applied Energy, Elsevier, vol. 210(C), pages 1082-1091.
    12. Su, Hongzhi & Wang, Chengshan & Li, Peng & Liu, Zhelin & Yu, Li & Wu, Jianzhong, 2019. "Optimal placement of phasor measurement unit in distribution networks considering the changes in topology," Applied Energy, Elsevier, vol. 250(C), pages 313-322.
    13. Aithal, Avinash & Li, Gen & Wu, Jianzhong & Yu, James, 2018. "Performance of an electrical distribution network with Soft Open Point during a grid side AC fault," Applied Energy, Elsevier, vol. 227(C), pages 262-272.
    14. Deakin, Matthew & Sarantakos, Ilias & Greenwood, David & Bialek, Janusz & Taylor, Phil C. & Walker, Sara, 2023. "Comparative analysis of services from soft open points using cost–benefit analysis," Applied Energy, Elsevier, vol. 333(C).
    15. Ji, Haoran & Wang, Chengshan & Li, Peng & Song, Guanyu & Wu, Jianzhong, 2018. "SOP-based islanding partition method of active distribution networks considering the characteristics of DG, energy storage system and load," Energy, Elsevier, vol. 155(C), pages 312-325.
    16. Qi, Qi & Wu, Jianzhong & Long, Chao, 2017. "Multi-objective operation optimization of an electrical distribution network with soft open point," Applied Energy, Elsevier, vol. 208(C), pages 734-744.
    17. Wu, Pan & Huang, Wentao & Tai, Nengling & Liang, Shuo, 2018. "A novel design of architecture and control for multiple microgrids with hybrid AC/DC connection," Applied Energy, Elsevier, vol. 210(C), pages 1002-1016.
    18. Zhang, Lu & Shen, Chen & Chen, Ying & Huang, Shaowei & Tang, Wei, 2018. "Coordinated allocation of distributed generation, capacitor banks and soft open points in active distribution networks considering dispatching results," Applied Energy, Elsevier, vol. 231(C), pages 1122-1131.
    19. Juan Noh & Seungjun Gham & Myungseok Yoon & Wookyu Chae & Woohyun Kim & Sungyun Choi, 2023. "A Study on a Communication-Based Algorithm to Improve Protection Coordination under High-Impedance Fault in Networked Distribution Systems," Sustainability, MDPI, vol. 15(21), pages 1-19, October.
    20. Qi, Qi & Long, Chao & Wu, Jianzhong & Yu, James, 2018. "Impacts of a medium voltage direct current link on the performance of electrical distribution networks," Applied Energy, Elsevier, vol. 230(C), pages 175-188.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:241:y:2019:i:c:p:613-624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.