IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i5p2541-2561d25811.html
   My bibliography  Save this article

Coordinated Control of a DFIG-Based Wind-Power Generation System with SGSC under Distorted Grid Voltage Conditions

Author

Listed:
  • Jun Yao

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China)

  • Qing Li

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China)

  • Zhe Chen

    (Department of Energy Technology, Aalborg University, Aalborg East DK-9220, Denmark)

  • Aolin Liu

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China)

Abstract

This paper presents a coordinated control method for a doubly-fed induction generator (DFIG)-based wind-power generation system with a series grid-side converter (SGSC) under distorted grid voltage conditions. The detailed mathematical models of the DFIG system with SGSC are developed in the multiple synchronous rotating reference frames. In order to counteract the adverse effects of the voltage harmonics upon the DFIG, the SGSC generates series compensation control voltages to keep the stator voltage sinusoidal and symmetrical, which allows the use of the conventional vector control strategy for the rotor-side converter (RSC), regardless of grid voltage harmonics. Meanwhile, two control targets for the parallel grid-side converter (PGSC) are identified, including eliminating the oscillations in total active and reactive power entering the grid or suppressing the fifth- and seventh-order harmonic currents injected to the grid. Furthermore, the respective PI-R controller in the positive synchronous reference frame for the SGSC voltage control and PGSC current control have been developed to achieve precise and rapid regulation of the corresponding components. Finally, the proposed coordinated control strategy has been fully validated by the simulation results of a 2 MW DFIG-based wind turbine with SGSC under distorted grid voltage conditions.

Suggested Citation

  • Jun Yao & Qing Li & Zhe Chen & Aolin Liu, 2013. "Coordinated Control of a DFIG-Based Wind-Power Generation System with SGSC under Distorted Grid Voltage Conditions," Energies, MDPI, vol. 6(5), pages 1-21, May.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:5:p:2541-2561:d:25811
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/5/2541/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/5/2541/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moonsung Bae & Hwanik Lee & Byongjun Lee, 2017. "An Approach to Improve the Penetration of Sustainable Energy Using Optimal Transformer Tap Control," Sustainability, MDPI, vol. 9(9), pages 1-15, August.
    2. Jaime Rodríguez Arribas & Adrián Fernández Rodríguez & Ángel Hermoso Muñoz & Carlos Veganzones Nicolás, 2014. "Low Voltage Ride-through in DFIG Wind Generators by Controlling the Rotor Current without Crowbars," Energies, MDPI, vol. 7(2), pages 1-22, January.
    3. Zhen Xie & Lifan Niu & Xing Zhang, 2018. "An Enhanced Control Strategy for Doubly-Fed Induction Generators Based on a Virtual Harmonic Resistor and Capacitor under Nonlinear Load Conditions," Energies, MDPI, vol. 11(10), pages 1-18, October.
    4. Yangwu Shen & Mingjian Cui & Qin Wang & Feifan Shen & Bin Zhang & Liqing Liang, 2017. "Comprehensive Reactive Power Support of DFIG Adapted to Different Depth of Voltage Sags," Energies, MDPI, vol. 10(6), pages 1-20, June.
    5. Juliano C. L. da Silva & Thales Ramos & Manoel F. Medeiros Júnior, 2021. "Modeling and Harmonic Impact Mitigation of Grid-Connected SCIG Driven by an Electromagnetic Frequency Regulator," Energies, MDPI, vol. 14(15), pages 1-21, July.
    6. Yanjian Peng & Yong Li & Zhisheng Xu & Ming Wen & Longfu Luo & Yijia Cao & Zbigniew Leonowicz, 2016. "Power Quality Improvement and LVRT Capability Enhancement of Wind Farms by Means of an Inductive Filtering Method," Energies, MDPI, vol. 9(4), pages 1-18, April.
    7. Dahai Zhang & Xiandong Ma & Yulin Si & Can Huang & Bin Huang & Wei Li, 2017. "Effect of Doubly Fed Induction GeneratorTidal Current Turbines on Stability of a Distribution Grid under Unbalanced Voltage Conditions," Energies, MDPI, vol. 10(2), pages 1-14, February.
    8. Raju, S.Krishnama & Pillai, G.N., 2016. "Design and real time implementation of type-2 fuzzy vector control for DFIG based wind generators," Renewable Energy, Elsevier, vol. 88(C), pages 40-50.
    9. Dan Wang & Chongru Liu & Gengyin Li, 2016. "An Optimal Integrated Control Scheme for Permanent Magnet Synchronous Generator-Based Wind Turbines under Asymmetrical Grid Fault Conditions," Energies, MDPI, vol. 9(4), pages 1-27, April.
    10. Kai Liao & Yao Wang, 2017. "A Comparison between Voltage and Reactive Power Feedback Schemes of DFIGs for Inter-Area Oscillation Damping Control," Energies, MDPI, vol. 10(8), pages 1-17, August.
    11. Vandai Le & Xinran Li & Yong Li & Tran Le Thang Dong & Caoquyen Le, 2016. "An Innovative Control Strategy to Improve the Fault Ride-Through Capability of DFIGs Based on Wind Energy Conversion Systems," Energies, MDPI, vol. 9(2), pages 1-23, January.
    12. Zhenxing Li & Yuting Fu & Ling Wang & Lu Wang & Wenliang Bao & Yanxia Chen, 2019. "The Analysis and Solution of Current Differential Protection Maloperation for Transmission Line with High Series Compensation Degree," Energies, MDPI, vol. 12(9), pages 1-22, April.
    13. Jing Liu & Zhigang Liu, 2017. "Harmonic Analyzing of the Double PWM Converter in DFIG Based on Mathematical Model," Energies, MDPI, vol. 10(12), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:5:p:2541-2561:d:25811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.