IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i2p441-d309533.html
   My bibliography  Save this article

Research Review of a Vehicle Energy-Regenerative Suspension System

Author

Listed:
  • Xueying Lv

    (College of Instrumentation & Electrical Engineering, Jilin University, Changchun 130061, China
    National Engineering Research Center of Geophysics Exploration Instruments, Jilin University, Changchun 130061, China)

  • Yanju Ji

    (College of Instrumentation & Electrical Engineering, Jilin University, Changchun 130061, China
    National Engineering Research Center of Geophysics Exploration Instruments, Jilin University, Changchun 130061, China)

  • Huanyu Zhao

    (College of Instrumentation & Electrical Engineering, Jilin University, Changchun 130061, China
    National Engineering Research Center of Geophysics Exploration Instruments, Jilin University, Changchun 130061, China)

  • Jiabao Zhang

    (College of Instrumentation & Electrical Engineering, Jilin University, Changchun 130061, China
    National Engineering Research Center of Geophysics Exploration Instruments, Jilin University, Changchun 130061, China)

  • Guanyu Zhang

    (College of Instrumentation & Electrical Engineering, Jilin University, Changchun 130061, China
    National Engineering Research Center of Geophysics Exploration Instruments, Jilin University, Changchun 130061, China)

  • Liu Zhang

    (College of Instrumentation & Electrical Engineering, Jilin University, Changchun 130061, China
    National Engineering Research Center of Geophysics Exploration Instruments, Jilin University, Changchun 130061, China)

Abstract

Vehicles are developing in the direction of energy-saving and electrification. suspension has been widely developed in the field of vehicles as a key component. Traditional hydraulic energy-supply suspensions dissipate vibration energy as waste heat to suppress vibration. This part of the energy is mainly generated by the vehicle engine. In order to effectively utilize the energy of this part, the energy-regenerative suspension with energy recovery converts the vibrational energy into electrical energy as the vehicle’s energy supply equipment. This article reviews the hydraulically powered suspension of vehicles with energy recovery. The importance of such suspension in vehicle energy recovery is analyzed. The main categories of energy-regenerative suspension are illustrated from different energy recovery methods, and the research status of hydraulic energy-regenerative suspension is comprehensively analyzed. Important factors that affect the shock-absorbing and regenerative characteristics of the suspension system are studied. In addition, some unresolved challenges are also proposed, which provides a reference value for the development of energy-regenerative suspension systems for hybrid new energy vehicles

Suggested Citation

  • Xueying Lv & Yanju Ji & Huanyu Zhao & Jiabao Zhang & Guanyu Zhang & Liu Zhang, 2020. "Research Review of a Vehicle Energy-Regenerative Suspension System," Energies, MDPI, vol. 13(2), pages 1-14, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:441-:d:309533
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/2/441/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/2/441/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Long, Guimin & Ding, Fei & Zhang, Nong & Zhang, Jie & Qin, An, 2020. "Regenerative active suspension system with residual energy for in-wheel motor driven electric vehicle," Applied Energy, Elsevier, vol. 260(C).
    2. Zhang, Zutao & Zhang, Xingtian & Chen, Weiwu & Rasim, Yagubov & Salman, Waleed & Pan, Hongye & Yuan, Yanping & Wang, Chunbai, 2016. "A high-efficiency energy regenerative shock absorber using supercapacitors for renewable energy applications in range extended electric vehicle," Applied Energy, Elsevier, vol. 178(C), pages 177-188.
    3. Briggs, Ian & McCullough, Geoffrey & Spence, Stephen & Douglas, Roy, 2014. "Whole-vehicle modelling of exhaust energy recovery on a diesel-electric hybrid bus," Energy, Elsevier, vol. 65(C), pages 172-181.
    4. Wei, Chongfeng & Taghavifar, Hamid, 2017. "A novel approach to energy harvesting from vehicle suspension system: Half-vehicle model," Energy, Elsevier, vol. 134(C), pages 279-288.
    5. Lincoln Bowen & Jordi Vinolas & José Luis Olazagoitia, 2019. "Design and Potential Power Recovery of Two Types of Energy Harvesting Shock Absorbers," Energies, MDPI, vol. 12(24), pages 1-19, December.
    6. Gao, Zepeng & Chen, Sizhong & Zhao, Yuzhuang & Liu, Zheng, 2019. "Numerical evaluation of compatibility between comfort and energy recovery based on energy flow mechanism inside electromagnetic active suspension," Energy, Elsevier, vol. 170(C), pages 521-536.
    7. Shi, Dehua & Pisu, Pierluigi & Chen, Long & Wang, Shaohua & Wang, Renguang, 2016. "Control design and fuel economy investigation of power split HEV with energy regeneration of suspension," Applied Energy, Elsevier, vol. 182(C), pages 576-589.
    8. Salman, Waleed & Qi, Lingfei & Zhu, Xin & Pan, Hongye & Zhang, Xingtian & Bano, Shehar & Zhang, Zutao & Yuan, Yanping, 2018. "A high-efficiency energy regenerative shock absorber using helical gears for powering low-wattage electrical device of electric vehicles," Energy, Elsevier, vol. 159(C), pages 361-372.
    9. Abdelkareem, Mohamed A.A. & Xu, Lin & Ali, Mohamed Kamal Ahmed & Elagouz, Ahmed & Mi, Jia & Guo, Sijing & Liu, Yilun & Zuo, Lei, 2018. "Vibration energy harvesting in automotive suspension system: A detailed review," Applied Energy, Elsevier, vol. 229(C), pages 672-699.
    10. Zhang, Yuxin & Guo, Konghui & Wang, Dai & Chen, Chao & Li, Xuefei, 2017. "Energy conversion mechanism and regenerative potential of vehicle suspensions," Energy, Elsevier, vol. 119(C), pages 961-970.
    11. Zhang, Ran & Wang, Xu & Al Shami, Elie & John, Sabu & Zuo, Lei & Wang, Chun H., 2018. "A novel indirect-drive regenerative shock absorber for energy harvesting and comparison with a conventional direct-drive regenerative shock absorber," Applied Energy, Elsevier, vol. 229(C), pages 111-127.
    12. Zhang, Yuxin & Chen, Hong & Guo, Konghui & Zhang, Xinjie & Eben Li, Shengbo, 2017. "Electro-hydraulic damper for energy harvesting suspension: Modeling, prototyping and experimental validation," Applied Energy, Elsevier, vol. 199(C), pages 1-12.
    13. Ruichen Wang & Fengshou Gu & Robert Cattley & Andrew D. Ball, 2016. "Modelling, Testing and Analysis of a Regenerative Hydraulic Shock Absorber System," Energies, MDPI, vol. 9(5), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Ruiz & Sergio Horta Muñoz & Reyes García-Contreras, 2022. "Simultaneous Design of the Host Structure and the Polarisation Profile of Piezoelectric Sensors Applied to Cylindrical Shell Structures," Mathematics, MDPI, vol. 10(15), pages 1-12, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Ran & Yan, Mingyin & Sun, Feng & Jin, Junjie & Li, Qiang & Xu, Fangchao & Zhang, Ming & Zhang, Xiaoyou & Nakano, Kimihiko, 2022. "Experimental validations of a magnetic energy-harvesting suspension and its potential application for self-powered sensing," Energy, Elsevier, vol. 239(PC).
    2. Abdelkareem, Mohamed A.A. & Xu, Lin & Ali, Mohamed Kamal Ahmed & El-Daly, Abdel-Rahman B.M. & Hassan, Mohamed A. & Elagouz, Ahmed & Bo, Yang, 2019. "Analysis of the prospective vibrational energy harvesting of heavy-duty truck suspensions: A simulation approach," Energy, Elsevier, vol. 173(C), pages 332-351.
    3. Abdelkareem, Mohamed A.A. & Xu, Lin & Ali, Mohamed Kamal Ahmed & Elagouz, Ahmed & Mi, Jia & Guo, Sijing & Liu, Yilun & Zuo, Lei, 2018. "Vibration energy harvesting in automotive suspension system: A detailed review," Applied Energy, Elsevier, vol. 229(C), pages 672-699.
    4. Li, Shiying & Xu, Jun & Pu, Xiaohui & Tao, Tao & Gao, Haonan & Mei, Xuesong, 2019. "Energy-harvesting variable/constant damping suspension system with motor based electromagnetic damper," Energy, Elsevier, vol. 189(C).
    5. Lafarge, Barbara & Grondel, Sébastien & Delebarre, Christophe & Curea, Octavian & Richard, Claude, 2021. "Linear electromagnetic energy harvester system embedded on a vehicle suspension: From modeling to performance analysis," Energy, Elsevier, vol. 225(C).
    6. Zhang, Ran & Zhao, Liya & Qiu, Xiaojun & Zhang, Hui & Wang, Xu, 2020. "A comprehensive comparison of the vehicle vibration energy harvesting abilities of the regenerative shock absorbers predicted by the quarter, half and full vehicle suspension system models," Applied Energy, Elsevier, vol. 272(C).
    7. Lincoln Bowen & Jordi Vinolas & José Luis Olazagoitia, 2019. "Design and Potential Power Recovery of Two Types of Energy Harvesting Shock Absorbers," Energies, MDPI, vol. 12(24), pages 1-19, December.
    8. Li, Shiying & Xu, Jun & Gao, Haonan & Tao, Tao & Mei, Xuesong, 2020. "Safety probability based multi-objective optimization of energy-harvesting suspension system," Energy, Elsevier, vol. 209(C).
    9. Long, Guimin & Ding, Fei & Zhang, Nong & Zhang, Jie & Qin, An, 2020. "Regenerative active suspension system with residual energy for in-wheel motor driven electric vehicle," Applied Energy, Elsevier, vol. 260(C).
    10. Abdelkareem, Mohamed A.A. & Zhang, Ran & Jing, Xingjian & Wang, Xu & Ali, Mohamed Kamal Ahmed, 2022. "Characterization and implementation of a double-sided arm-toothed indirect-drive rotary electromagnetic energy-harvesting shock absorber in a full semi-trailer truck suspension platform," Energy, Elsevier, vol. 239(PA).
    11. Luo, Rongkang & Yu, Zhihao & Wu, Peibao & Hou, Zhichao, 2023. "Analytical solutions of the energy harvesting potential from vehicle vertical vibration based on statistical energy conservation," Energy, Elsevier, vol. 264(C).
    12. Li, Hai & Zheng, Peng & Zhang, Tingsheng & Zou, Yingquan & Pan, Yajia & Zhang, Zutao & Azam, Ali, 2021. "A high-efficiency energy regenerative shock absorber for powering auxiliary devices of new energy driverless buses," Applied Energy, Elsevier, vol. 295(C).
    13. Chen, Shi-An & Jiang, Xu-Dong & Yao, Ming & Jiang, Shun-Ming & Chen, Jinzhou & Wang, Ya-Xiong, 2020. "A dual vibration reduction structure-based self-powered active suspension system with PMSM-ball screw actuator via an improved H2/H∞ control," Energy, Elsevier, vol. 201(C).
    14. Sathishkumar, P. & Wang, Ruochen & Yang, Lin & Thiyagarajan, J., 2021. "Energy harvesting approach to utilize the dissipated energy during hydraulic active suspension operation with comfort oriented control scheme," Energy, Elsevier, vol. 224(C).
    15. Pan, Hongye & Qi, Lingfei & Zhang, Zutao & Yan, Jinyue, 2021. "Kinetic energy harvesting technologies for applications in land transportation: A comprehensive review," Applied Energy, Elsevier, vol. 286(C).
    16. Cai, Qinlin & Zhu, Songye, 2022. "The nexus between vibration-based energy harvesting and structural vibration control: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    17. Chongchong Li & Changyu Zhou & Jiangyong Xiong, 2023. "New Method to Coordinate Vibration Energy Regeneration and Dynamic Performance of In-Wheel Motor Electrical Vehicles," Energies, MDPI, vol. 16(7), pages 1-18, March.
    18. Lingbo Li & Guoliang Hu & Lifan Yu & Haonan Qi, 2021. "Development and Performance Analysis of a New Self-Powered Magnetorheological Damper with Energy-Harvesting Capability," Energies, MDPI, vol. 14(19), pages 1-22, September.
    19. Puliti, Marco & Galluzzi, Renato & Tessari, Federico & Amati, Nicola & Tonoli, Andrea, 2024. "Energy efficient design of regenerative shock absorbers for automotive suspensions: A multi-objective optimization framework," Applied Energy, Elsevier, vol. 358(C).
    20. Carlos Gijón-Rivera & José Luis Olazagoitia, 2020. "Methodology for Comprehensive Comparison of Energy Harvesting Shock Absorber Systems," Energies, MDPI, vol. 13(22), pages 1-25, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:441-:d:309533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.