IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v225y2021ics0360544221002401.html
   My bibliography  Save this article

Linear electromagnetic energy harvester system embedded on a vehicle suspension: From modeling to performance analysis

Author

Listed:
  • Lafarge, Barbara
  • Grondel, Sébastien
  • Delebarre, Christophe
  • Curea, Octavian
  • Richard, Claude

Abstract

Although linear electromagnetic energy harvester (LEH) is a promising technique for converting energy in a vehicle suspension, due to the large displacements, one of the main drawbacks of the solutions inside the vehicle is still their size and complexity. To address this issue, this paper focuses on the design and fabrication of a fully embedded LEH without any modification of the suspension initial structure. After a determination of the electrical, mechanical and electromechanical parameters using a Finite Element analysis, the dynamic efficiency is highlighted with a global Bond Graph model. This formalism is well adapted to simulate energy transfers inside multiphysic systems and to reduce the computational time, whereas the finite element model is not exploitable for a complete suspension simulation. In order to validate the Bond Graph simulation results, an embedded prototype has been built and tested in a laboratory environment. The embedded LEH system delivers around 10 W for a solicitation of linear velocity of 1 m/s which is sufficient to power a classical electronic circuit which is in good correlation with the measured ones and significant power has been obtained.

Suggested Citation

  • Lafarge, Barbara & Grondel, Sébastien & Delebarre, Christophe & Curea, Octavian & Richard, Claude, 2021. "Linear electromagnetic energy harvester system embedded on a vehicle suspension: From modeling to performance analysis," Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:energy:v:225:y:2021:i:c:s0360544221002401
    DOI: 10.1016/j.energy.2021.119991
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221002401
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.119991?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Dipesh & Chatterjee, Kalyan, 2016. "A review of conventional and advanced MPPT algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 957-970.
    2. Zhang, Zutao & Zhang, Xingtian & Chen, Weiwu & Rasim, Yagubov & Salman, Waleed & Pan, Hongye & Yuan, Yanping & Wang, Chunbai, 2016. "A high-efficiency energy regenerative shock absorber using supercapacitors for renewable energy applications in range extended electric vehicle," Applied Energy, Elsevier, vol. 178(C), pages 177-188.
    3. Abdelkareem, Mohamed A.A. & Xu, Lin & Ali, Mohamed Kamal Ahmed & Elagouz, Ahmed & Mi, Jia & Guo, Sijing & Liu, Yilun & Zuo, Lei, 2018. "Vibration energy harvesting in automotive suspension system: A detailed review," Applied Energy, Elsevier, vol. 229(C), pages 672-699.
    4. Zhang, Yuxin & Chen, Hong & Guo, Konghui & Zhang, Xinjie & Eben Li, Shengbo, 2017. "Electro-hydraulic damper for energy harvesting suspension: Modeling, prototyping and experimental validation," Applied Energy, Elsevier, vol. 199(C), pages 1-12.
    5. Ruichen Wang & Fengshou Gu & Robert Cattley & Andrew D. Ball, 2016. "Modelling, Testing and Analysis of a Regenerative Hydraulic Shock Absorber System," Energies, MDPI, vol. 9(5), pages 1-24, May.
    6. Wei, Chongfeng & Taghavifar, Hamid, 2017. "A novel approach to energy harvesting from vehicle suspension system: Half-vehicle model," Energy, Elsevier, vol. 134(C), pages 279-288.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Xu & Wang, Kangda & Li, Siyu & Wang, Yadong & Sun, Daoyu & Wang, Longlong & He, Zhizhu & Tang, Wei & Liu, Huicong & Jin, Xiaoping & Li, Zhen, 2024. "An ultra-compact lightweight electromagnetic generator enhanced with Halbach magnet array and printed triphase windings," Applied Energy, Elsevier, vol. 353(PA).
    2. Sani, Godwin & Balaram, Bipin & Kudra, Grzegorz & Awrejcewicz, Jan, 2024. "Energy harvesting from friction-induced vibrations in vehicle braking systems in the presence of rotary unbalances," Energy, Elsevier, vol. 289(C).
    3. Vidal, João V. & Carneiro, Pedro M.R. & Soares dos Santos, Marco P., 2024. "A complete physical 3D model from first principles of vibrational-powered electromagnetic generators," Applied Energy, Elsevier, vol. 357(C).
    4. Wang, Wei & Zhang, Ying & Wei, Zon-Han & Cao, Junyi, 2022. "Design and numerical investigation of an ultra-wide bandwidth rolling magnet bistable electromagnetic harvester," Energy, Elsevier, vol. 261(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xueying Lv & Yanju Ji & Huanyu Zhao & Jiabao Zhang & Guanyu Zhang & Liu Zhang, 2020. "Research Review of a Vehicle Energy-Regenerative Suspension System," Energies, MDPI, vol. 13(2), pages 1-14, January.
    2. Lincoln Bowen & Jordi Vinolas & José Luis Olazagoitia, 2019. "Design and Potential Power Recovery of Two Types of Energy Harvesting Shock Absorbers," Energies, MDPI, vol. 12(24), pages 1-19, December.
    3. Zhou, Ran & Yan, Mingyin & Sun, Feng & Jin, Junjie & Li, Qiang & Xu, Fangchao & Zhang, Ming & Zhang, Xiaoyou & Nakano, Kimihiko, 2022. "Experimental validations of a magnetic energy-harvesting suspension and its potential application for self-powered sensing," Energy, Elsevier, vol. 239(PC).
    4. Abdelkareem, Mohamed A.A. & Xu, Lin & Ali, Mohamed Kamal Ahmed & El-Daly, Abdel-Rahman B.M. & Hassan, Mohamed A. & Elagouz, Ahmed & Bo, Yang, 2019. "Analysis of the prospective vibrational energy harvesting of heavy-duty truck suspensions: A simulation approach," Energy, Elsevier, vol. 173(C), pages 332-351.
    5. Abdelkareem, Mohamed A.A. & Xu, Lin & Ali, Mohamed Kamal Ahmed & Elagouz, Ahmed & Mi, Jia & Guo, Sijing & Liu, Yilun & Zuo, Lei, 2018. "Vibration energy harvesting in automotive suspension system: A detailed review," Applied Energy, Elsevier, vol. 229(C), pages 672-699.
    6. Li, Shiying & Xu, Jun & Gao, Haonan & Tao, Tao & Mei, Xuesong, 2020. "Safety probability based multi-objective optimization of energy-harvesting suspension system," Energy, Elsevier, vol. 209(C).
    7. Cai, Qinlin & Zhu, Songye, 2022. "The nexus between vibration-based energy harvesting and structural vibration control: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    8. Puliti, Marco & Galluzzi, Renato & Tessari, Federico & Amati, Nicola & Tonoli, Andrea, 2024. "Energy efficient design of regenerative shock absorbers for automotive suspensions: A multi-objective optimization framework," Applied Energy, Elsevier, vol. 358(C).
    9. Abdelkareem, Mohamed A.A. & Zhang, Ran & Jing, Xingjian & Wang, Xu & Ali, Mohamed Kamal Ahmed, 2022. "Characterization and implementation of a double-sided arm-toothed indirect-drive rotary electromagnetic energy-harvesting shock absorber in a full semi-trailer truck suspension platform," Energy, Elsevier, vol. 239(PA).
    10. Li, Hai & Zheng, Peng & Zhang, Tingsheng & Zou, Yingquan & Pan, Yajia & Zhang, Zutao & Azam, Ali, 2021. "A high-efficiency energy regenerative shock absorber for powering auxiliary devices of new energy driverless buses," Applied Energy, Elsevier, vol. 295(C).
    11. Li, Shiying & Xu, Jun & Pu, Xiaohui & Tao, Tao & Gao, Haonan & Mei, Xuesong, 2019. "Energy-harvesting variable/constant damping suspension system with motor based electromagnetic damper," Energy, Elsevier, vol. 189(C).
    12. Long, Guimin & Ding, Fei & Zhang, Nong & Zhang, Jie & Qin, An, 2020. "Regenerative active suspension system with residual energy for in-wheel motor driven electric vehicle," Applied Energy, Elsevier, vol. 260(C).
    13. Doaa Al-Yafeai & Tariq Darabseh & Abdel-Hamid I. Mourad, 2020. "A State-Of-The-Art Review of Car Suspension-Based Piezoelectric Energy Harvesting Systems," Energies, MDPI, vol. 13(9), pages 1-39, May.
    14. Jacek Caban & Jan Vrabel & Dorota Górnicka & Radosław Nowak & Maciej Jankiewicz & Jonas Matijošius & Marek Palka, 2023. "Overview of Energy Harvesting Technologies Used in Road Vehicles," Energies, MDPI, vol. 16(9), pages 1-32, April.
    15. Galluzzi, Renato & Xu, Yijun & Amati, Nicola & Tonoli, Andrea, 2018. "Optimized design and characterization of motor-pump unit for energy-regenerative shock absorbers," Applied Energy, Elsevier, vol. 210(C), pages 16-27.
    16. Sani, Godwin & Balaram, Bipin & Kudra, Grzegorz & Awrejcewicz, Jan, 2024. "Energy harvesting from friction-induced vibrations in vehicle braking systems in the presence of rotary unbalances," Energy, Elsevier, vol. 289(C).
    17. Zhang, Ran & Wang, Xu & Al Shami, Elie & John, Sabu & Zuo, Lei & Wang, Chun H., 2018. "A novel indirect-drive regenerative shock absorber for energy harvesting and comparison with a conventional direct-drive regenerative shock absorber," Applied Energy, Elsevier, vol. 229(C), pages 111-127.
    18. Wang, Xudong & Wang, Qi & Wang, Wei & Cui, Yongjie & Song, Yuling, 2023. "Performance investigation of piezoelectric-mechanical electromagnetic compound vibration energy harvester for electric tractor," Energy, Elsevier, vol. 281(C).
    19. Ruichen Wang & Paul Allen & Yang Song & Zhiwei Wang, 2022. "Modelling and Analysis of Power-Regenerating Potential for High-Speed Train Suspensions," Sustainability, MDPI, vol. 14(5), pages 1-22, February.
    20. Ran Zhang & Xu Wang & Sabu John, 2018. "A Comprehensive Review of the Techniques on Regenerative Shock Absorber Systems," Energies, MDPI, vol. 11(5), pages 1-43, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:225:y:2021:i:c:s0360544221002401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.