IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i15p2753-d879387.html
   My bibliography  Save this article

Simultaneous Design of the Host Structure and the Polarisation Profile of Piezoelectric Sensors Applied to Cylindrical Shell Structures

Author

Listed:
  • David Ruiz

    (OMEVA Research Group, Escuela de Ingeniería Industrial y Aeroespacial de Toledo, Universidad de Castilla-La Mancha, Av. Carlos III, Campus Fábrica de Armas, 45004 Toledo, Spain)

  • Sergio Horta Muñoz

    (Instituto de Investigación Aplicada a la Industria Aeronáutica, Escuela de Ingeniería Industrial y Aeroespacial de Toledo, Universidad de Castilla-La Mancha, Av. Carlos III, Campus Fábrica de Armas, 45004 Toledo, Spain)

  • Reyes García-Contreras

    (Instituto de Investigación Aplicada a la Industria Aeronáutica, Escuela de Ingeniería Industrial y Aeroespacial de Toledo, Universidad de Castilla-La Mancha, Av. Carlos III, Campus Fábrica de Armas, 45004 Toledo, Spain)

Abstract

Piezoelectric actuators and sensors are applied in many fields in order to produce forces or displacements with the aim of sensing, manipulating or measurement, among other functions. This study presents the numerical methodology to optimize the static response of a thick-shell structure consisting of piezoelectric sensors, based on the maximisation of the electric charge while controlling the amount of piezoelectric and material required. Two characteristic functions are involved, determining the topology of the sensor and the polarisation profile. Constraints over the reaction force are included in the optimisation problem in order to avoid singularities. The topology optimisation method is used to obtain the optimal results, where regularisation techniques (density filtering and projection) are used to avoid hinges. The minimum length scale can be controlled by the use of three different projections. As the main novelty, a displacement-controlled scheme is proposed in order to generate a robust algorithm for future studies including non-linearities.

Suggested Citation

  • David Ruiz & Sergio Horta Muñoz & Reyes García-Contreras, 2022. "Simultaneous Design of the Host Structure and the Polarisation Profile of Piezoelectric Sensors Applied to Cylindrical Shell Structures," Mathematics, MDPI, vol. 10(15), pages 1-12, August.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2753-:d:879387
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/15/2753/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/15/2753/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xueying Lv & Yanju Ji & Huanyu Zhao & Jiabao Zhang & Guanyu Zhang & Liu Zhang, 2020. "Research Review of a Vehicle Energy-Regenerative Suspension System," Energies, MDPI, vol. 13(2), pages 1-14, January.
    2. Zhen Zhao & Tie Wang & Baifu Zhang & Jinhong Shi, 2019. "Energy Harvesting from Vehicle Suspension System by Piezoelectric Harvester," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-10, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saleh Alhumaid & Daniel Hess & Rasim Guldiken, 2022. "A Noncontact Magneto–Piezo Harvester-Based Vehicle Regenerative Suspension System: An Experimental Study," Energies, MDPI, vol. 15(12), pages 1-17, June.
    2. Zuhaib Ashfaq Khan & Hafiz Husnain Raza Sherazi & Mubashir Ali & Muhammad Ali Imran & Ikram Ur Rehman & Prasun Chakrabarti, 2021. "Designing a Wind Energy Harvester for Connected Vehicles in Green Cities," Energies, MDPI, vol. 14(17), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2753-:d:879387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.