IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6162-d450102.html
   My bibliography  Save this article

Adaptive Control of HVDC Links for Frequency Stability Enhancement in Low-Inertia Systems

Author

Listed:
  • Jelena Stojković

    (School of Electrical Engineering, University of Belgrade, 11000 Belgrade, Serbia)

  • Aleksandra Lekić

    (Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, 2629 Delft, The Netherlands)

  • Predrag Stefanov

    (School of Electrical Engineering, University of Belgrade, 11000 Belgrade, Serbia)

Abstract

Decarbonization of power systems has put Renewable Energy Sources (RES) at the forefront when it comes to electric power generation. The increasing shares of converter-connected renewable generation cause a decrease of the rotational inertia of the Electric Power System (EPS), and consequently deteriorate the system capability to withstand large load-generation imbalances. Low-inertia systems are subjected to fast and large frequency changes in case of in-feed loss, where the traditional primary frequency control is not sufficient to preserve the frequency stability and to maintain the frequency above the critical value. One possible solution to this rising problem is seen in Fast Frequency Response (FFR) provided by the High-Voltage Direct-Current (HVDC)-based systems. This paper presents the adaptive FFR control of HVDC-based systems for frequency stability enhancement in the low-inertia system. The EPS is considered as a “black box” and the HVDC response is determined only using the locally measured frequency change. Sliding Mode Control (SMC) of the Modular Multilevel Converter (MMC) was developed and demonstrated to provide faster and more appropriate frequency response compared to the PI controller. The described adaptive HVDC control considers the size of disturbance and the inertia of the power system, and it is verified by simulations on the IEEE 39 bus test system implemented in MATLAB/Simulink for different system configurations and different sizes of disturbance.

Suggested Citation

  • Jelena Stojković & Aleksandra Lekić & Predrag Stefanov, 2020. "Adaptive Control of HVDC Links for Frequency Stability Enhancement in Low-Inertia Systems," Energies, MDPI, vol. 13(23), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6162-:d:450102
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6162/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6162/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marta Haro-Larrode & Maider Santos-Mugica & Agurtzane Etxegarai & Pablo Eguia, 2020. "Methodology for Tuning MTDC Supervisory and Frequency-Response Control Systems at Terminal Level under Over-Frequency Events," Energies, MDPI, vol. 13(11), pages 1-20, June.
    2. Shangen Tian & David Campos-Gaona & Vinícius A. Lacerda & Raymundo E. Torres-Olguin & Olimpo Anaya-Lara, 2020. "Novel Control Approach for a Hybrid Grid-Forming HVDC Offshore Transmission System," Energies, MDPI, vol. 13(7), pages 1-14, April.
    3. Hao Wang & Yue Wang & Guozhao Duan & Weihao Hu & Wenti Wang & Zhe Chen, 2017. "An Improved Droop Control Method for Multi-Terminal VSC-HVDC Converter Stations," Energies, MDPI, vol. 10(7), pages 1-13, June.
    4. Waqar Uddin & Kamran Zeb & Muhammad Adil Khan & Muhammad Ishfaq & Imran Khan & Saif ul Islam & Hee-Je Kim & Gwan Soo Park & Cheewoo Lee, 2019. "Control of Output and Circulating Current of Modular Multilevel Converter Using a Sliding Mode Approach," Energies, MDPI, vol. 12(21), pages 1-22, October.
    5. Jafar Jallad & Saad Mekhilef & Hazlie Mokhlis, 2017. "Frequency Regulation Strategies in Grid Integrated Offshore Wind Turbines via VSC-HVDC Technology: A Review," Energies, MDPI, vol. 10(9), pages 1-29, August.
    6. Abhimanyu Kaushal & Dirk Van Hertem, 2019. "An Overview of Ancillary Services and HVDC Systems in European Context," Energies, MDPI, vol. 12(18), pages 1-20, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tianwen Zheng & Laijun Chen & Yan Guo & Wei Wei & Bo Zhou & Xinwei Sun, 2021. "A VSG-Based Coordinated DC Voltage Control for VSC-HVDC to Participate in Frequency Regulation," Energies, MDPI, vol. 14(9), pages 1-13, May.
    2. Ahmed, Faraedoon & Al Kez, Dlzar & McLoone, Seán & Best, Robert James & Cameron, Ché & Foley, Aoife, 2023. "Dynamic grid stability in low carbon power systems with minimum inertia," Renewable Energy, Elsevier, vol. 210(C), pages 486-506.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gianluca Brando & Efstratios Chatzinikolaou & Dan Rogers & Ivan Spina, 2021. "Electrochemical Cell Loss Minimization in Modular Multilevel Converters Based on Half-Bridge Modules," Energies, MDPI, vol. 14(5), pages 1-14, March.
    2. Theofilos A. Papadopoulos & Kalliopi D. Pippi & Georgios A. Barzegkar-Ntovom & Eleftherios O. Kontis & Angelos I. Nousdilis & Christos L. Athanasiadis & Georgios C. Kryonidis, 2023. "Validation of a Holistic System for Operational Analysis and Provision of Ancillary Services in Active Distribution Networks," Energies, MDPI, vol. 16(6), pages 1-27, March.
    3. Lisi, Francesco & Grossi, Luigi & Quaglia, Federico, 2023. "Evaluation of Cost-at-Risk related to the procurement of resources in the ancillary services market. The case of the Italian electricity market," Energy Economics, Elsevier, vol. 121(C).
    4. Carmine Cancro & Camelia Delcea & Salvatore Fabozzi & Gabriella Ferruzzi & Giorgio Graditi & Valeria Palladino & Maria Valenti, 2022. "A Profitability Analysis for an Aggregator in the Ancillary Services Market: An Italian Case Study," Energies, MDPI, vol. 15(9), pages 1-26, April.
    5. Yekui Chang & Rao Liu & Yu Ba & Weidong Li, 2018. "A New Control Logic for a Wind-Area on the Balancing Authority Area Control Error Limit Standard for Load Frequency Control," Energies, MDPI, vol. 11(1), pages 1-20, January.
    6. Saman Dadjo Tavakoli & Eduardo Prieto-Araujo & Enric Sánchez-Sánchez & Oriol Gomis-Bellmunt, 2020. "Interaction Assessment and Stability Analysis of the MMC-Based VSC-HVDC Link," Energies, MDPI, vol. 13(8), pages 1-19, April.
    7. Lijun Xie & Fan Cheng & Jing Wu, 2022. "Control Strategy for Offshore Wind Farms with DC Collection System Based on Series-Connected Diode Rectifier," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
    8. Ana Fernández-Guillamón & Guillermo Martínez-Lucas & Ángel Molina-García & Jose Ignacio Sarasua, 2020. "An Adaptive Control Scheme for Variable Speed Wind Turbines Providing Frequency Regulation in Isolated Power Systems with Thermal Generation," Energies, MDPI, vol. 13(13), pages 1-19, July.
    9. Jovan, David Jure & Dolanc, Gregor & Pregelj, Boštjan, 2022. "Utilization of excess water accumulation for green hydrogen production in a run-of-river hydropower plant," Renewable Energy, Elsevier, vol. 195(C), pages 780-794.
    10. Bo-Yu Luo & Ramadhani Kurniawan Subroto & Chang-Zhi Wang & Kuo-Lung Lian, 2022. "An Improved Sliding Mode Control with Integral Surface for a Modular Multilevel Power Converter," Energies, MDPI, vol. 15(5), pages 1-18, February.
    11. Weipeng Yang & Aimin Zhang & Jungang Li & Guoqi Li & Hang Zhang & Jianhua Wang, 2017. "Integral Plus Resonant Sliding Mode Direct Power Control for VSC-HVDC Systems under Unbalanced Grid Voltage Conditions," Energies, MDPI, vol. 10(10), pages 1-17, October.
    12. Habib Benbouhenni & Nicu Bizon, 2021. "Third-Order Sliding Mode Applied to the Direct Field-Oriented Control of the Asynchronous Generator for Variable-Speed Contra-Rotating Wind Turbine Generation Systems," Energies, MDPI, vol. 14(18), pages 1-20, September.
    13. Ana Fernández-Guillamón & Antonio Vigueras-Rodríguez & Emilio Gómez-Lázaro & Ángel Molina-García, 2018. "Fast Power Reserve Emulation Strategy for VSWT Supporting Frequency Control in Multi-Area Power Systems," Energies, MDPI, vol. 11(10), pages 1-20, October.
    14. Kamran Zeb & Tiago Davi Curi Busarello & Saif Ul Islam & Waqar Uddin & Kummara Venkata Guru Raghavendra & Muhammad Adil Khan & Hee-Je Kim, 2020. "Design of Super Twisting Sliding Mode Controller for a Three-Phase Grid-connected Photovoltaic System under Normal and Abnormal Conditions," Energies, MDPI, vol. 13(15), pages 1-21, July.
    15. Luís F. N. Lourenço & Filipe Perez & Alessio Iovine & Gilney Damm & Renato M. Monaro & Maurício B. C. Salles, 2021. "Stability Analysis of Grid-Forming MMC-HVDC Transmission Connected to Legacy Power Systems," Energies, MDPI, vol. 14(23), pages 1-25, December.
    16. Jahangeer Badar Soomro & Dileep Kumar & Faheem Akhtar Chachar & Semih Isik & Mohammed Alharbi, 2023. "An Enhanced AC Fault Ride through Scheme for Offshore Wind-Based MMC-HVDC System," Sustainability, MDPI, vol. 15(11), pages 1-16, June.
    17. Fahad Alsokhiry & Grain Philip Adam, 2020. "Multi-Port DC-DC and DC-AC Converters for Large-Scale Integration of Renewable Power Generation," Sustainability, MDPI, vol. 12(20), pages 1-21, October.
    18. David Jure Jovan & Gregor Dolanc, 2020. "Can Green Hydrogen Production Be Economically Viable under Current Market Conditions," Energies, MDPI, vol. 13(24), pages 1-16, December.
    19. Andrés Peña Asensio & Santiago Arnaltes Gómez & Jose Luis Rodriguez-Amenedo & Manuel García Plaza & Joaquín Eloy-García Carrasco & Jaime Manuel Alonso-Martínez de las Morenas, 2018. "A Voltage and Frequency Control Strategy for Stand-Alone Full Converter Wind Energy Conversion Systems," Energies, MDPI, vol. 11(3), pages 1-19, February.
    20. Yuhong Wang & Jie Zhu & Qi Zeng & Zongsheng Zheng & Guangyuan Yu & Aihui Yin, 2021. "Frequency Coordinated Control Strategy for an HVDC Sending-End System with Wind Power Integration Based on Fuzzy Logic Control," Energies, MDPI, vol. 14(19), pages 1-25, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6162-:d:450102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.