IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i21p4084-d280471.html
   My bibliography  Save this article

Control of Output and Circulating Current of Modular Multilevel Converter Using a Sliding Mode Approach

Author

Listed:
  • Waqar Uddin

    (School of Electrical and Computer Engineering, Pusan National University, Busan 46241, Korea)

  • Kamran Zeb

    (School of Electrical and Computer Engineering, Pusan National University, Busan 46241, Korea
    Department of Electrical Engineering, National University of Science and Technology, Islamabad 44000, Pakistan)

  • Muhammad Adil Khan

    (Department of Electrical and Computer Science, Air University, Islamabad 44000, Pakistan)

  • Muhammad Ishfaq

    (School of Electrical and Computer Engineering, Pusan National University, Busan 46241, Korea)

  • Imran Khan

    (C2N, University of Paris Sud, University of Paris Saclay, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France)

  • Saif ul Islam

    (School of Electrical and Computer Engineering, Pusan National University, Busan 46241, Korea)

  • Hee-Je Kim

    (School of Electrical and Computer Engineering, Pusan National University, Busan 46241, Korea)

  • Gwan Soo Park

    (School of Electrical and Computer Engineering, Pusan National University, Busan 46241, Korea)

  • Cheewoo Lee

    (School of Electrical and Computer Engineering, Pusan National University, Busan 46241, Korea)

Abstract

The modular multilevel converter (MMC) has been prominently used in medium- and high-power applications. This paper presents the control of output and circulating current of MMC using sliding mode control (SMC). The design of the proposed controller and the relation between control parameters and validity condition are based on the system dynamics. The proposed designed controller enables the system to track its reference values. The controller is designed to control both output current and circulating current along with suppression of second harmonics contents in circulating current. Furthermore, the capacitor voltage and energy of the converter are also regulated. The control of output current is carried out in d q -axis as well as in α β − a x i s with first-order switching law. However, a second-order switching law-based super twisting algorithm is used for controlling circulating current and suppression of its second harmonics contents. The stability of the controlled system is numerically calculated and verified by Lyapunov stability conditions. Moreover, the simulation results of the proposed controller are critically compared with the conventional proportional resonant (PR) controller to verify the effectiveness of the proposed control strategy. The proposed controller attains faster dynamic response and minimizes steady-state error comparatively. The simulation of the MMC model is carried out in MATLAB/Simulink.

Suggested Citation

  • Waqar Uddin & Kamran Zeb & Muhammad Adil Khan & Muhammad Ishfaq & Imran Khan & Saif ul Islam & Hee-Je Kim & Gwan Soo Park & Cheewoo Lee, 2019. "Control of Output and Circulating Current of Modular Multilevel Converter Using a Sliding Mode Approach," Energies, MDPI, vol. 12(21), pages 1-22, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4084-:d:280471
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/21/4084/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/21/4084/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kamran Zeb & Waqar U. Din & Muhammad Adil Khan & Ayesha Khan & Umair Younas & Tiago Davi Curi Busarello & Hee Je Kim, 2018. "Dynamic Simulations of Adaptive Design Approaches to Control the Speed of an Induction Machine Considering Parameter Uncertainties and External Perturbations," Energies, MDPI, vol. 11(9), pages 1-25, September.
    2. Zeb, Kamran & Uddin, Waqar & Khan, Muhammad Adil & Ali, Zunaib & Ali, Muhammad Umair & Christofides, Nicholas & Kim, H.J., 2018. "A comprehensive review on inverter topologies and control strategies for grid connected photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1120-1141.
    3. Kamran Zeb & Imran Khan & Waqar Uddin & Muhammad Adil Khan & P. Sathishkumar & Tiago Davi Curi Busarello & Iftikhar Ahmad & H. J. Kim, 2018. "A Review on Recent Advances and Future Trends of Transformerless Inverter Structures for Single-Phase Grid-Connected Photovoltaic Systems," Energies, MDPI, vol. 11(8), pages 1-34, July.
    4. Muhammad Ishfaq & Waqar Uddin & Kamran Zeb & Imran Khan & Saif Ul Islam & Muhammad Adil Khan & Hee Je Kim, 2019. "A New Adaptive Approach to Control Circulating and Output Current of Modular Multilevel Converter," Energies, MDPI, vol. 12(6), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jahangeer Badar Soomro & Faheem Akhtar Chachar & Madad Ali Shah & Abdul Aziz Memon & Faisal Alsaif & Sager Alsulamy, 2023. "Optimized Circulating Current Control and Enhanced AC Fault Ride-through Capability Using Model Predictive Control for MMC-HVDC Applications," Energies, MDPI, vol. 16(13), pages 1-19, July.
    2. Gianluca Brando & Efstratios Chatzinikolaou & Dan Rogers & Ivan Spina, 2021. "Electrochemical Cell Loss Minimization in Modular Multilevel Converters Based on Half-Bridge Modules," Energies, MDPI, vol. 14(5), pages 1-14, March.
    3. Saman Dadjo Tavakoli & Eduardo Prieto-Araujo & Enric Sánchez-Sánchez & Oriol Gomis-Bellmunt, 2020. "Interaction Assessment and Stability Analysis of the MMC-Based VSC-HVDC Link," Energies, MDPI, vol. 13(8), pages 1-19, April.
    4. Bo-Yu Luo & Ramadhani Kurniawan Subroto & Chang-Zhi Wang & Kuo-Lung Lian, 2022. "An Improved Sliding Mode Control with Integral Surface for a Modular Multilevel Power Converter," Energies, MDPI, vol. 15(5), pages 1-18, February.
    5. Kamran Zeb & Muhammad Saqib Nazir & Iftikhar Ahmad & Waqar Uddin & Hee-Je Kim, 2021. "Control of Transformerless Inverter-Based Two-Stage Grid-Connected Photovoltaic System Using Adaptive-PI and Adaptive Sliding Mode Controllers," Energies, MDPI, vol. 14(9), pages 1-15, April.
    6. Subhashree Choudhury & Mohit Bajaj & Taraprasanna Dash & Salah Kamel & Francisco Jurado, 2021. "Multilevel Inverter: A Survey on Classical and Advanced Topologies, Control Schemes, Applications to Power System and Future Prospects," Energies, MDPI, vol. 14(18), pages 1-48, September.
    7. Jahangeer Badar Soomro & Dileep Kumar & Faheem Akhtar Chachar & Semih Isik & Mohammed Alharbi, 2023. "An Enhanced AC Fault Ride through Scheme for Offshore Wind-Based MMC-HVDC System," Sustainability, MDPI, vol. 15(11), pages 1-16, June.
    8. Waqar Uddin & Tiago D. C. Busarello & Kamran Zeb & Muhammad Adil Khan & Anil Kumar Yedluri & Hee-Je Kim, 2021. "Control Strategy Based on Arm-Level Control for Output and Circulating Current of MMC in Stationary Reference Frame," Energies, MDPI, vol. 14(14), pages 1-20, July.
    9. Jelena Stojković & Aleksandra Lekić & Predrag Stefanov, 2020. "Adaptive Control of HVDC Links for Frequency Stability Enhancement in Low-Inertia Systems," Energies, MDPI, vol. 13(23), pages 1-20, November.
    10. Kamran Zeb & Tiago Davi Curi Busarello & Saif Ul Islam & Waqar Uddin & Kummara Venkata Guru Raghavendra & Muhammad Adil Khan & Hee-Je Kim, 2020. "Design of Super Twisting Sliding Mode Controller for a Three-Phase Grid-connected Photovoltaic System under Normal and Abnormal Conditions," Energies, MDPI, vol. 13(15), pages 1-21, July.
    11. Habib Benbouhenni & Nicu Bizon, 2021. "Third-Order Sliding Mode Applied to the Direct Field-Oriented Control of the Asynchronous Generator for Variable-Speed Contra-Rotating Wind Turbine Generation Systems," Energies, MDPI, vol. 14(18), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamran Zeb & Muhammad Saqib Nazir & Iftikhar Ahmad & Waqar Uddin & Hee-Je Kim, 2021. "Control of Transformerless Inverter-Based Two-Stage Grid-Connected Photovoltaic System Using Adaptive-PI and Adaptive Sliding Mode Controllers," Energies, MDPI, vol. 14(9), pages 1-15, April.
    2. Kamran Zeb & Tiago Davi Curi Busarello & Saif Ul Islam & Waqar Uddin & Kummara Venkata Guru Raghavendra & Muhammad Adil Khan & Hee-Je Kim, 2020. "Design of Super Twisting Sliding Mode Controller for a Three-Phase Grid-connected Photovoltaic System under Normal and Abnormal Conditions," Energies, MDPI, vol. 13(15), pages 1-21, July.
    3. Zeb, Kamran & Islam, Saif Ul & Khan, Imran & Uddin, Waqar & Ishfaq, M. & Curi Busarello, Tiago Davi & Muyeen, S.M. & Ahmad, Iftikhar & Kim, H.J., 2022. "Faults and Fault Ride Through strategies for grid-connected photovoltaic system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Muhammad Yasir Ali Khan & Haoming Liu & Zhihao Yang & Xiaoling Yuan, 2020. "A Comprehensive Review on Grid Connected Photovoltaic Inverters, Their Modulation Techniques, and Control Strategies," Energies, MDPI, vol. 13(16), pages 1-40, August.
    5. Mostafa Ahmed & Mohamed Abdelrahem & Ibrahim Harbi & Ralph Kennel, 2020. "An Adaptive Model-Based MPPT Technique with Drift-Avoidance for Grid-Connected PV Systems," Energies, MDPI, vol. 13(24), pages 1-25, December.
    6. Ding, Kun & Chen, Xiang & Weng, Shuai & Liu, Yongjie & Zhang, Jingwei & Li, Yuanliang & Yang, Zenan, 2023. "Health status evaluation of photovoltaic array based on deep belief network and Hausdorff distance," Energy, Elsevier, vol. 262(PB).
    7. Kurz, Konstantin & Bock, Carolin & Knodt, Michèle & Stöckl, Anna, 2022. "A Friend in Need Is a Friend Indeed? Analysis of the Willingness to Share Self-Produced Electricity During a Long-lasting Power Outage," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 136773, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    8. Vargas Gil, Gloria Milena & Bittencourt Aguiar Cunha, Rafael & Giuseppe Di Santo, Silvio & Machado Monaro, Renato & Fragoso Costa, Fabiano & Sguarezi Filho, Alfeu J., 2020. "Photovoltaic energy in South America: Current state and grid regulation for large-scale and distributed photovoltaic systems," Renewable Energy, Elsevier, vol. 162(C), pages 1307-1320.
    9. Larbi Chrifi-Alaoui & Saïd Drid & Mohammed Ouriagli & Driss Mehdi, 2023. "Overview of Photovoltaic and Wind Electrical Power Hybrid Systems," Energies, MDPI, vol. 16(12), pages 1-35, June.
    10. Imran Khan & Kamran Zeb & Waqar Ud Din & Saif Ul Islam & Muhammad Ishfaq & Sadam Hussain & Hee-Je Kim, 2019. "Dynamic Modeling and Robust Controllers Design for Doubly Fed Induction Generator-Based Wind Turbines under Unbalanced Grid Fault Conditions," Energies, MDPI, vol. 12(3), pages 1-23, January.
    11. Luigi Costanzo & Massimo Vitelli, 2019. "A Novel MPPT Technique for Single Stage Grid-Connected PV Systems: T4S," Energies, MDPI, vol. 12(23), pages 1-13, November.
    12. Vasudevan, Krishnakumar R. & Ramachandaramurthy, Vigna K. & Venugopal, Gomathi & Ekanayake, J.B. & Tiong, S.K., 2021. "Variable speed pumped hydro storage: A review of converters, controls and energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Aditi Atul Desai & Suresh Mikkili & Tomonobu Senjyu, 2022. "Novel H6 Transformerless Inverter for Grid Connected Photovoltaic System to Reduce the Conduction Loss and Enhance Efficiency," Energies, MDPI, vol. 15(10), pages 1-22, May.
    14. Márcio Rodrigo Santos de Carvalho & Fabrício Bradaschia & Leonardo Rodrigues Limongi & Gustavo Medeiros de Souza Azevedo, 2019. "Modeling and Control Design of the Symmetrical Interleaved Coupled-Inductor-Based Boost DC-DC Converter with Clamp Circuits," Energies, MDPI, vol. 12(18), pages 1-21, September.
    15. Denis Pelin & Matej Žnidarec & Damir Šljivac & Andrej Brandis, 2020. "Fast Power Emulation Approach to the Operation of Photovoltaic Power Plants Made of Different Module Technologies," Energies, MDPI, vol. 13(22), pages 1-17, November.
    16. Mauricio Muñoz-Ramírez & Hugo Valderrama-Blavi & Marco Rivera & Carlos Restrepo, 2019. "An Approach to Natural Sampling Using a Digital Sampling Technique for SPWM Multilevel Inverter Modulation," Energies, MDPI, vol. 12(15), pages 1-16, July.
    17. Roland Kasper & Dmytro Golovakha, 2020. "Combined Optimal Torque Feedforward and Modal Current Feedback Control for Low Inductance PM Motors," Energies, MDPI, vol. 13(23), pages 1-16, November.
    18. Mohamed Salem & Anna Richelli & Khalid Yahya & Muhammad Najwan Hamidi & Tze-Zhang Ang & Ibrahim Alhamrouni, 2022. "A Comprehensive Review on Multilevel Inverters for Grid-Tied System Applications," Energies, MDPI, vol. 15(17), pages 1-40, August.
    19. da Silva Benedito, Ricardo & Zilles, Roberto & Pinho, João Tavares, 2021. "Overcoming the power factor apparent degradation of loads fed by photovoltaic distributed generators," Renewable Energy, Elsevier, vol. 164(C), pages 1364-1375.
    20. Ievgen Verbytskyi & Mykola Lukianov & Kawsar Nassereddine & Bohdan Pakhaliuk & Oleksandr Husev & Ryszard Michał Strzelecki, 2022. "Power Converter Solutions for Industrial PV Applications—A Review," Energies, MDPI, vol. 15(9), pages 1-33, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4084-:d:280471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.