IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p7860-d849468.html
   My bibliography  Save this article

Control Strategy for Offshore Wind Farms with DC Collection System Based on Series-Connected Diode Rectifier

Author

Listed:
  • Lijun Xie

    (China Electric Power Research Institute, Beijing 100192, China)

  • Fan Cheng

    (Center for Strategic Studies, China Academy of Engineering, No 2 Bingjiaokou Hutong, Beijing 100088, China)

  • Jing Wu

    (China Electric Power Planning & Engineering Institute, No 65 Ande Road, Beijing 100120, China)

Abstract

The DR-HVDC (Diode rectifier-based HVDC) transmission topology was recently proposed for integration on large offshore wind farms due to its low investment cost and high reliability. To further reduce the investment, a DC collection topology based on the series-connected diode rectifiers (DR) is proposed, where no offshore platform is needed. However, units of series-connected topology (SCU) show coupling issues, such as overvoltage, energy curtailment, and fault isolation. First, the coupling mechanism is analyzed, and a suitable operation mode for SCUs is selected to ensure the safe operation of the DC system. Then, the linear relationship of active power and output DC current and DC voltage of SCUs is analyzed, and a novel coordinate control strategy for DC wind farms is proposed, where an onshore converter adapts a DC current controller and wind turbines adapt a mediate output voltage control strategy. The mediate output voltage control strategy includes a triple loop with power loop, mediate output voltage loop, and current loop. Also, the DC open line fault, DC grounding fault, and AC grounding fault of the onshore grid are investigated, and a protection strategy is proposed. A 160 MW wind farm with a DR-SCU DC collection system is built in PSCAD/EMTDC to verify the validity of the proposed control strategy under unequal wind speeds, DC fault, and onshore AC fault, and the results validate the performance of the proposed strategy.

Suggested Citation

  • Lijun Xie & Fan Cheng & Jing Wu, 2022. "Control Strategy for Offshore Wind Farms with DC Collection System Based on Series-Connected Diode Rectifier," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7860-:d:849468
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/7860/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/7860/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Md Ismail Hossain & Mohammad A. Abido, 2020. "SCIG Based Wind Energy Integrated Multiterminal MMC-HVDC Transmission Network," Sustainability, MDPI, vol. 12(9), pages 1-27, April.
    2. Shangen Tian & David Campos-Gaona & Vinícius A. Lacerda & Raymundo E. Torres-Olguin & Olimpo Anaya-Lara, 2020. "Novel Control Approach for a Hybrid Grid-Forming HVDC Offshore Transmission System," Energies, MDPI, vol. 13(7), pages 1-14, April.
    3. Ryo Miyara & Akito Nakadomari & Hidehito Matayoshi & Hiroshi Takahashi & Ashraf M. Hemeida & Tomonobu Senjyu, 2020. "A Resonant Hybrid DC Circuit Breaker for Multi-Terminal HVDC Systems," Sustainability, MDPI, vol. 12(18), pages 1-14, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ran Tao & Jingpeng Yue & Zhenlin Huang & Ranran An & Zou Li & Junfeng Liu, 2022. "A High-Gain DC Side Converter with a Ripple-Free Input Current for Offshore Wind Energy Systems," Sustainability, MDPI, vol. 14(18), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md Ismail Hossain & Md Shafiullah & Mohammad A. Abido, 2023. "Battery Power Control Strategy for Intermittent Renewable Energy Integrated Modular Multilevel Converter-Based High-Voltage Direct Current Network," Sustainability, MDPI, vol. 15(3), pages 1-31, February.
    2. Luís F. N. Lourenço & Filipe Perez & Alessio Iovine & Gilney Damm & Renato M. Monaro & Maurício B. C. Salles, 2021. "Stability Analysis of Grid-Forming MMC-HVDC Transmission Connected to Legacy Power Systems," Energies, MDPI, vol. 14(23), pages 1-25, December.
    3. A. Padmaja & Allusivala Shanmukh & Siva Subrahmanyam Mendu & Ramesh Devarapalli & Javier Serrano González & Fausto Pedro García Márquez, 2021. "Design of Capacitive Bridge Fault Current Limiter for Low-Voltage Ride-Through Capacity Enrichment of Doubly Fed Induction Generator-Based Wind Farm," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    4. Jelena Stojković & Aleksandra Lekić & Predrag Stefanov, 2020. "Adaptive Control of HVDC Links for Frequency Stability Enhancement in Low-Inertia Systems," Energies, MDPI, vol. 13(23), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7860-:d:849468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.