IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2775-d176037.html
   My bibliography  Save this article

Fast Power Reserve Emulation Strategy for VSWT Supporting Frequency Control in Multi-Area Power Systems

Author

Listed:
  • Ana Fernández-Guillamón

    (Department of Electrical Engineering, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain)

  • Antonio Vigueras-Rodríguez

    (Department of Civil Engineering, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain)

  • Emilio Gómez-Lázaro

    (Renewable Energy Research Institute and DIEEAC-EDII-AB, Universidad de Castilla-La Mancha, 02071 Albacete, Spain)

  • Ángel Molina-García

    (Department of Electrical Engineering, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain)

Abstract

The integration of renewables into power systems involves significant targets and new scenarios with an important role for these alternative resources, mainly wind and PV power plants. Among the different objectives, frequency control strategies and new reserve analysis are currently considered as a major concern in power system stability and reliability studies. This paper aims to provide an analysis of multi-area power systems submitted to power imbalances, considering a high wind power penetration in line with certain European energy road-maps. Frequency control strategies applied to wind power plants from different areas are studied and compared for simulation purposes, including conventional generation units. Different parameters, such as nadir values, stabilization time intervals and tie-line active power exchanges are also analyzed. Detailed generation unit models are included in the paper. The results provide relevant information on the influence of multi-area scenarios on the global frequency response, including participation of wind power plants in system frequency control.

Suggested Citation

  • Ana Fernández-Guillamón & Antonio Vigueras-Rodríguez & Emilio Gómez-Lázaro & Ángel Molina-García, 2018. "Fast Power Reserve Emulation Strategy for VSWT Supporting Frequency Control in Multi-Area Power Systems," Energies, MDPI, vol. 11(10), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2775-:d:176037
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2775/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2775/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haixin Wang & Junyou Yang & Zhe Chen & Weichun Ge & Shiyan Hu & Yiming Ma & Yunlu Li & Guanfeng Zhang & Lijian Yang, 2018. "Gain Scheduled Torque Compensation of PMSG-Based Wind Turbine for Frequency Regulation in an Isolated Grid," Energies, MDPI, vol. 11(7), pages 1-19, June.
    2. Perera, A.T.D. & Nik, Vahid M. & Mauree, Dasaraden & Scartezzini, Jean-Louis, 2017. "Electrical hubs: An effective way to integrate non-dispatchable renewable energy sources with minimum impact to the grid," Applied Energy, Elsevier, vol. 190(C), pages 232-248.
    3. Danny Ochoa & Sergio Martinez, 2018. "Proposals for Enhancing Frequency Control in Weak and Isolated Power Systems: Application to the Wind-Diesel Power System of San Cristobal Island-Ecuador," Energies, MDPI, vol. 11(4), pages 1-25, April.
    4. Abdulhameed S. Alsharafi & Ahmad H. Besheer & Hassan M. Emara, 2018. "Primary Frequency Response Enhancement for Future Low Inertia Power Systems Using Hybrid Control Technique," Energies, MDPI, vol. 11(4), pages 1-20, March.
    5. Chongxin Huang & Dong Yue & Xiangpeng Xie & Jun Xie, 2016. "Anti-Windup Load Frequency Controller Design for Multi-Area Power System with Generation Rate Constraint," Energies, MDPI, vol. 9(5), pages 1-18, April.
    6. Ochoa, Danny & Martinez, Sergio, 2018. "Frequency dependent strategy for mitigating wind power fluctuations of a doubly-fed induction generator wind turbine based on virtual inertia control and blade pitch angle regulation," Renewable Energy, Elsevier, vol. 128(PA), pages 108-124.
    7. Mahmut Temel ÖZDEMİR & Dursun ÖZTÜRK, 2017. "Comparative Performance Analysis of Optimal PID Parameters Tuning Based on the Optics Inspired Optimization Methods for Automatic Generation Control," Energies, MDPI, vol. 10(12), pages 1-19, December.
    8. Thongchart Kerdphol & Fathin Saifur Rahman & Yasunori Mitani, 2018. "Virtual Inertia Control Application to Enhance Frequency Stability of Interconnected Power Systems with High Renewable Energy Penetration," Energies, MDPI, vol. 11(4), pages 1-16, April.
    9. Dongyang Sun & Lizhi Sun & Fengjiang Wu & Guangxin Zu, 2018. "Frequency Inertia Response Control of SCESS-DFIG under Fluctuating Wind Speeds Based on Extended State Observers," Energies, MDPI, vol. 11(4), pages 1-27, April.
    10. Yekui Chang & Rao Liu & Yu Ba & Weidong Li, 2018. "A New Control Logic for a Wind-Area on the Balancing Authority Area Control Error Limit Standard for Load Frequency Control," Energies, MDPI, vol. 11(1), pages 1-20, January.
    11. Ana Fernández-Guillamón & Jorge Villena-Lapaz & Antonio Vigueras-Rodríguez & Tania García-Sánchez & Ángel Molina-García, 2018. "An Adaptive Frequency Strategy for Variable Speed Wind Turbines: Application to High Wind Integration Into Power Systems," Energies, MDPI, vol. 11(6), pages 1-21, June.
    12. Tielens, Pieter & Van Hertem, Dirk, 2016. "The relevance of inertia in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 999-1009.
    13. Guo-Qiang Zeng & Xiao-Qing Xie & Min-Rong Chen, 2017. "An Adaptive Model Predictive Load Frequency Control Method for Multi-Area Interconnected Power Systems with Photovoltaic Generations," Energies, MDPI, vol. 10(11), pages 1-23, November.
    14. Dreidy, Mohammad & Mokhlis, H. & Mekhilef, Saad, 2017. "Inertia response and frequency control techniques for renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 144-155.
    15. Mehdi Tavakkoli & Jafar Adabi & Sasan Zabihi & Radu Godina & Edris Pouresmaeil, 2018. "Reserve Allocation of Photovoltaic Systems to Improve Frequency Stability in Hybrid Power Systems," Energies, MDPI, vol. 11(10), pages 1-19, September.
    16. Muhammad Saeed Uz Zaman & Syed Basit Ali Bukhari & Khalid Mousa Hazazi & Zunaib Maqsood Haider & Raza Haider & Chul-Hwan Kim, 2018. "Frequency Response Analysis of a Single-Area Power System with a Modified LFC Model Considering Demand Response and Virtual Inertia," Energies, MDPI, vol. 11(4), pages 1-20, March.
    17. Hansen, Anca D. & Altin, Müfit & Margaris, Ioannis D. & Iov, Florin & Tarnowski, Germán C., 2014. "Analysis of the short-term overproduction capability of variable speed wind turbines," Renewable Energy, Elsevier, vol. 68(C), pages 326-336.
    18. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    19. Hongyue Li & Xihuai Wang & Jianmei Xiao, 2018. "Differential Evolution-Based Load Frequency Robust Control for Micro-Grids with Energy Storage Systems," Energies, MDPI, vol. 11(7), pages 1-19, June.
    20. Hafiz, Faizal & Abdennour, Adel, 2015. "Optimal use of kinetic energy for the inertial support from variable speed wind turbines," Renewable Energy, Elsevier, vol. 80(C), pages 629-643.
    21. Jafar Jallad & Saad Mekhilef & Hazlie Mokhlis, 2017. "Frequency Regulation Strategies in Grid Integrated Offshore Wind Turbines via VSC-HVDC Technology: A Review," Energies, MDPI, vol. 10(9), pages 1-29, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Ana Fernández-Guillamón & Guillermo Martínez-Lucas & Ángel Molina-García & Jose Ignacio Sarasua, 2020. "An Adaptive Control Scheme for Variable Speed Wind Turbines Providing Frequency Regulation in Isolated Power Systems with Thermal Generation," Energies, MDPI, vol. 13(13), pages 1-19, July.
    3. Ana Fernández-Guillamón & Jorge Villena-Lapaz & Antonio Vigueras-Rodríguez & Tania García-Sánchez & Ángel Molina-García, 2018. "An Adaptive Frequency Strategy for Variable Speed Wind Turbines: Application to High Wind Integration Into Power Systems," Energies, MDPI, vol. 11(6), pages 1-21, June.
    4. Khan, Asif & Seyedmahmoudian, Mehdi & Raza, Ali & Stojcevski, Alex, 2021. "Analytical review on common and state-of-the-art FR strategies for VSC-MTDC integrated offshore wind power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Debanjan, Mukherjee & Karuna, Kalita, 2022. "An Overview of Renewable Energy Scenario in India and its Impact on Grid Inertia and Frequency Response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Hirase, Yuko & Abe, Kensho & Sugimoto, Kazushige & Sakimoto, Kenichi & Bevrani, Hassan & Ise, Toshifumi, 2018. "A novel control approach for virtual synchronous generators to suppress frequency and voltage fluctuations in microgrids," Applied Energy, Elsevier, vol. 210(C), pages 699-710.
    7. Pablo Fernández-Bustamante & Oscar Barambones & Isidro Calvo & Cristian Napole & Mohamed Derbeli, 2021. "Provision of Frequency Response from Wind Farms: A Review," Energies, MDPI, vol. 14(20), pages 1-24, October.
    8. Kheshti, Mostafa & Ding, Lei & Nayeripour, Majid & Wang, Xiaowei & Terzija, Vladimir, 2019. "Active power support of wind turbines for grid frequency events using a reliable power reference scheme," Renewable Energy, Elsevier, vol. 139(C), pages 1241-1254.
    9. Ratnam, Kamala Sarojini & Palanisamy, K. & Yang, Guangya, 2020. "Future low-inertia power systems: Requirements, issues, and solutions - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    10. Müfit Altin & Jan Christian Kuhlmann & Kaushik Das & Anca Daniela Hansen, 2018. "Optimization of Synthetic Inertial Response from Wind Power Plants," Energies, MDPI, vol. 11(5), pages 1-15, April.
    11. Hector Beltran & Sam Harrison & Agustí Egea-Àlvarez & Lie Xu, 2020. "Techno-Economic Assessment of Energy Storage Technologies for Inertia Response and Frequency Support from Wind Farms," Energies, MDPI, vol. 13(13), pages 1-21, July.
    12. Ana Fernández-Guillamón & Guillermo Martínez-Lucas & Ángel Molina-García & Jose-Ignacio Sarasua, 2020. "Hybrid Wind–PV Frequency Control Strategy under Variable Weather Conditions in Isolated Power Systems," Sustainability, MDPI, vol. 12(18), pages 1-25, September.
    13. Pablo González-Inostroza & Claudia Rahmann & Ricardo Álvarez & Jannik Haas & Wolfgang Nowak & Christian Rehtanz, 2021. "The Role of Fast Frequency Response of Energy Storage Systems and Renewables for Ensuring Frequency Stability in Future Low-Inertia Power Systems," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    14. Rafiq Asghar & Francesco Riganti Fulginei & Hamid Wadood & Sarmad Saeed, 2023. "A Review of Load Frequency Control Schemes Deployed for Wind-Integrated Power Systems," Sustainability, MDPI, vol. 15(10), pages 1-29, May.
    15. Kanwal, S. & Khan, B. & Ali, S.M. & Mehmood, C.A., 2018. "Gaussian process regression based inertia emulation and reserve estimation for grid interfaced photovoltaic system," Renewable Energy, Elsevier, vol. 126(C), pages 865-875.
    16. Junfeng Qi & Fei Tang & Jiarui Xie & Xinang Li & Xiaoqing Wei & Zhuo Liu, 2022. "Research on Frequency Response Modeling and Frequency Modulation Parameters of the Power System Highly Penetrated by Wind Power," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
    17. Kaleem Ullah & Abdul Basit & Zahid Ullah & Sheraz Aslam & Herodotos Herodotou, 2021. "Automatic Generation Control Strategies in Conventional and Modern Power Systems: A Comprehensive Overview," Energies, MDPI, vol. 14(9), pages 1-43, April.
    18. Ninoslav Holjevac & Tomislav Baškarad & Josip Đaković & Matej Krpan & Matija Zidar & Igor Kuzle, 2021. "Challenges of High Renewable Energy Sources Integration in Power Systems—The Case of Croatia," Energies, MDPI, vol. 14(4), pages 1-20, February.
    19. Jose Rueda Torres & Zameer Ahmad & Nidarshan Veera Kumar & Elyas Rakhshani & Ebrahim Adabi & Peter Palensky & Mart van der Meijden, 2021. "Power Hardware-in-the-Loop-Based Performance Analysis of Different Converter Controllers for Fast Active Power Regulation in Low-Inertia Power Systems," Energies, MDPI, vol. 14(11), pages 1-15, June.
    20. Zihao Cheng & Songlin Hu & Jieting Ma, 2020. "Resilient Event-Triggered Control for LFC-VSG Scheme of Uncertain Discrete-Time Power System under DoS Attacks," Energies, MDPI, vol. 13(7), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2775-:d:176037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.