IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2495-d358809.html
   My bibliography  Save this article

Sustainable Utilization of Low Enthalpy Geothermal Resources to Electricity Generation through a Cascade System

Author

Listed:
  • Michał Kaczmarczyk

    (Department of Fossil Fuels, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, 30-059 Kraków, Poland)

  • Barbara Tomaszewska

    (Department of Fossil Fuels, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, 30-059 Kraków, Poland)

  • Agnieszka Operacz

    (Department of Sanitary Engineering and Water Management, Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, 30-059 Kraków, Poland)

Abstract

The article presents an assessment of the potential for using low temperature geothermal water from the C-PIG-1 well (Ma?opolskie Voivodship, southern Poland) for electricity generation, as the first stage in a geothermal cascade system. The C-PIG-1 well is characterised by a temperature of geothermal water of 82 °C and a maximum flow rate of 51.22 kg/s. Geothermal water is currently only utilised for recreation purposes in swimming pools. In such locations, with the potential to use renewable energy for energetic purposes, the possibility of comprehensive management of the geothermal waters extracted should be considered both in the first stage of the cascade and after recreational use. Thermodynamic calculations were conducted assuming the use of the Organic Rankine Cycle (ORC) or Kalina Cycle. Two variants were analysed—the use of the maximum flow rate of geothermal waters and partial use with an assumption of a priority for recreational/heating purposes. The analysis and calculations indicate that the gross capacity in the most optimistic variant will not exceed 250 kW for the ORC and 440 kW for the Kalina Cycle. As far as the gross electricity generation is concerned, for ORC this will not exceed 1.9 GWh/year and for the Kalina Cycle it will not exceed 3.5 GWh/year.

Suggested Citation

  • Michał Kaczmarczyk & Barbara Tomaszewska & Agnieszka Operacz, 2020. "Sustainable Utilization of Low Enthalpy Geothermal Resources to Electricity Generation through a Cascade System," Energies, MDPI, vol. 13(10), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2495-:d:358809
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2495/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2495/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arslan, Oguz, 2011. "Power generation from medium temperature geothermal resources: ANN-based optimization of Kalina cycle system-34," Energy, Elsevier, vol. 36(5), pages 2528-2534.
    2. Yari, Mortaza, 2010. "Exergetic analysis of various types of geothermal power plants," Renewable Energy, Elsevier, vol. 35(1), pages 112-121.
    3. Leszek Pająk & Barbara Tomaszewska & Wiesław Bujakowski & Bogusław Bielec & Marta Dendys, 2020. "Review of the Low-Enthalpy Lower Cretaceous Geothermal Energy Resources in Poland as an Environmentally Friendly Source of Heat for Urban District Heating Systems," Energies, MDPI, vol. 13(6), pages 1-13, March.
    4. Shokati, Naser & Ranjbar, Faramarz & Yari, Mortaza, 2015. "Exergoeconomic analysis and optimization of basic, dual-pressure and dual-fluid ORCs and Kalina geothermal power plants: A comparative study," Renewable Energy, Elsevier, vol. 83(C), pages 527-542.
    5. Michał Kaczmarczyk & Barbara Tomaszewska & Leszek Pająk, 2020. "Geological and Thermodynamic Analysis of Low Enthalpy Geothermal Resources to Electricity Generation Using ORC and Kalina Cycle Technology," Energies, MDPI, vol. 13(6), pages 1-20, March.
    6. Bayer, Peter & Rybach, Ladislaus & Blum, Philipp & Brauchler, Ralf, 2013. "Review on life cycle environmental effects of geothermal power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 446-463.
    7. Xia, Liangyu & Zhang, Yabo, 2019. "An overview of world geothermal power generation and a case study on China—The resource and market perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 411-423.
    8. Altun, A.F. & Kilic, M., 2020. "Thermodynamic performance evaluation of a geothermal ORC power plant," Renewable Energy, Elsevier, vol. 148(C), pages 261-274.
    9. Yari, M. & Mehr, A.S. & Zare, V. & Mahmoudi, S.M.S. & Rosen, M.A., 2015. "Exergoeconomic comparison of TLC (trilateral Rankine cycle), ORC (organic Rankine cycle) and Kalina cycle using a low grade heat source," Energy, Elsevier, vol. 83(C), pages 712-722.
    10. Rubio-Maya, C. & Ambríz Díaz, V.M. & Pastor Martínez, E. & Belman-Flores, J.M., 2015. "Cascade utilization of low and medium enthalpy geothermal resources − A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 689-716.
    11. Karimi, Shahram & Mansouri, Sima, 2018. "A comparative profitability study of geothermal electricity production in developed and developing countries: Exergoeconomic analysis and optimization of different ORC configurations," Renewable Energy, Elsevier, vol. 115(C), pages 600-619.
    12. Wang, Enhua & Yu, Zhibin, 2016. "A numerical analysis of a composition-adjustable Kalina cycle power plant for power generation from low-temperature geothermal sources," Applied Energy, Elsevier, vol. 180(C), pages 834-848.
    13. Liu, Qiang & Duan, Yuanyuan & Yang, Zhen, 2013. "Performance analyses of geothermal organic Rankine cycles with selected hydrocarbon working fluids," Energy, Elsevier, vol. 63(C), pages 123-132.
    14. Guzović, Z. & Lončar, D. & Ferdelji, N., 2010. "Possibilities of electricity generation in the Republic of Croatia by means of geothermal energy," Energy, Elsevier, vol. 35(8), pages 3429-3440.
    15. Li, Jing & Pei, Gang & Li, Yunzhu & Wang, Dongyue & Ji, Jie, 2012. "Energetic and exergetic investigation of an organic Rankine cycle at different heat source temperatures," Energy, Elsevier, vol. 38(1), pages 85-95.
    16. Mehri Akbari & Seyed M. S. Mahmoudi & Mortaza Yari & Marc A. Rosen, 2014. "Energy and Exergy Analyses of a New Combined Cycle for Producing Electricity and Desalinated Water Using Geothermal Energy," Sustainability, MDPI, vol. 6(4), pages 1-25, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sean M. Watson & Gioia Falcone & Rob Westaway, 2020. "Repurposing Hydrocarbon Wells for Geothermal Use in the UK: The Onshore Fields with the Greatest Potential," Energies, MDPI, vol. 13(14), pages 1-29, July.
    2. Sagar Shelare & Ravinder Kumar & Trupti Gajbhiye & Sumit Kanchan, 2023. "Role of Geothermal Energy in Sustainable Water Desalination—A Review on Current Status, Parameters, and Challenges," Energies, MDPI, vol. 16(6), pages 1-22, March.
    3. Semmari, Hamza & Bouaicha, Foued & Aberkane, Sofiane & Filali, Abdelkader & Blessent, Daniela & Badache, Messaoud, 2024. "Geological context and thermo-economic study of an indirect heat ORC geothermal power plant for the northeast region of Algeria," Energy, Elsevier, vol. 290(C).
    4. Reyes-Antonio, Claudio Antonio & Iglesias-Silva, Gustavo Arturo & Rubio-Maya, Carlos & Fuentes-Cortés, Luis Fabián, 2024. "Multi-objective design of off-grid low-enthalpy geothermal generation systems considering partial-load operations," Energy, Elsevier, vol. 294(C).
    5. Agnieszka Operacz & Bogusław Bielec & Barbara Tomaszewska & Michał Kaczmarczyk, 2020. "Physicochemical Composition Variability and Hydraulic Conditions in a Geothermal Borehole—The Latest Study in Podhale Basin, Poland," Energies, MDPI, vol. 13(15), pages 1-18, July.
    6. Agnieszka Operacz & Agnieszka Zachora-Buławska & Izabela Strzelecka & Mariusz Buda & Bogusław Bielec & Karolina Migdał & Tomasz Operacz, 2022. "The Standard Geothermal Plant as an Innovative Combined Renewable Energy Resources System: The Case from South Poland," Energies, MDPI, vol. 15(17), pages 1-23, September.
    7. Szturgulewski, Kacper & Głuch, Jerzy & Drosińska-Komor, Marta & Ziółkowski, Paweł & Gardzilewicz, Andrzej & Brzezińska-Gołębiewska, Katarzyna, 2024. "Hybrid geothermal-fossil power cycle analysis in a Polish setting with a focus on off-design performance and CO2 emissions reductions," Energy, Elsevier, vol. 299(C).
    8. David B. Walls & David Banks & Adrian J. Boyce & Neil M. Burnside, 2021. "A Review of the Performance of Minewater Heating and Cooling Systems," Energies, MDPI, vol. 14(19), pages 1-33, September.
    9. Dominika Matuszewska & Marta Kuta & Piotr Olczak, 2020. "Techno-Economic Assessment of Mobilized Thermal Energy Storage System Using Geothermal Source in Polish Conditions," Energies, MDPI, vol. 13(13), pages 1-24, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Inkyu & Tester, Jefferson William & You, Fengqi, 2019. "Systems analysis, design, and optimization of geothermal energy systems for power production and polygeneration: State-of-the-art and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 551-577.
    2. Zhao, Yajing & Wang, Jiangfeng, 2016. "Exergoeconomic analysis and optimization of a flash-binary geothermal power system," Applied Energy, Elsevier, vol. 179(C), pages 159-170.
    3. Anderson, Austin & Rezaie, Behnaz, 2019. "Geothermal technology: Trends and potential role in a sustainable future," Applied Energy, Elsevier, vol. 248(C), pages 18-34.
    4. Mohammadzadeh Bina, Saeid & Jalilinasrabady, Saeid & Fujii, Hikari, 2017. "Energy, economic and environmental (3E) aspects of internal heat exchanger for ORC geothermal power plants," Energy, Elsevier, vol. 140(P1), pages 1096-1106.
    5. Wang, Zengli & Shao, Hua & Shao, Mingcheng & Dai, Zeyu & Zhang, Rao, 2024. "Thermodynamic analysis of a coupled system based on total flow cycle and partially evaporated organic Rankine cycle for hot dry rock utilization," Renewable Energy, Elsevier, vol. 225(C).
    6. Moya, Diego & Aldás, Clay & Kaparaju, Prasad, 2018. "Geothermal energy: Power plant technology and direct heat applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 889-901.
    7. Yilmaz, Ceyhun & Koyuncu, Ismail, 2021. "Thermoeconomic modeling and artificial neural network optimization of Afyon geothermal power plant," Renewable Energy, Elsevier, vol. 163(C), pages 1166-1181.
    8. Yuan Zhao & Chenghao Gao & Chengjun Li & Jie Sun & Chunyan Wang & Qiang Liu & Jun Zhao, 2022. "Energy and Exergy Analyses of Geothermal Organic Rankine Cycles Considering the Effect of Brine Reinjection Temperature," Energies, MDPI, vol. 15(17), pages 1-20, August.
    9. Toledo-Paz, Lili M. & Colorado-Garrido, Dario & Conde-Gutiérrez, Roberto A. & Herrera-Romero, José Vidal & Escalante-Soberanis, Mauricio Alberto, 2024. "Improvement of a double flash cycle using a heat exchanger with liquid cooling and liquid splitting technology for a geothermal power plant," Energy, Elsevier, vol. 304(C).
    10. Huster, Wolfgang R. & Schweidtmann, Artur M. & Mitsos, Alexander, 2020. "Globally optimal working fluid mixture composition for geothermal power cycles," Energy, Elsevier, vol. 212(C).
    11. Mahmoudi, S.M.S. & Akbari Kordlar, M., 2018. "A new flexible geothermal based cogeneration system producing power and refrigeration," Renewable Energy, Elsevier, vol. 123(C), pages 499-512.
    12. Ghasemi, Hadi & Paci, Marco & Tizzanini, Alessio & Mitsos, Alexander, 2013. "Modeling and optimization of a binary geothermal power plant," Energy, Elsevier, vol. 50(C), pages 412-428.
    13. Zhao, Lu & Hai, Qing & Mei, Junlun, 2024. "An integrated approach to green power, cooling, and freshwater production from geothermal and solar energy sources; case study of Jiangsu, China," Energy, Elsevier, vol. 305(C).
    14. Zhou, Xiao & Cai, Yangchao & Li, Xuetao, 2024. "Process arrangement and multi-aspect study of a novel environmentally-friendly multigeneration plant relying on a geothermal-based plant combined with the goswami cycle booted by kalina and desalinati," Energy, Elsevier, vol. 299(C).
    15. Liu, Qiang & Shang, Linlin & Duan, Yuanyuan, 2016. "Performance analyses of a hybrid geothermal–fossil power generation system using low-enthalpy geothermal resources," Applied Energy, Elsevier, vol. 162(C), pages 149-162.
    16. Li, Jian & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Liu, Qiang, 2018. "Parametric optimization and thermodynamic performance comparison of single-pressure and dual-pressure evaporation organic Rankine cycles," Applied Energy, Elsevier, vol. 217(C), pages 409-421.
    17. Vaccari, Marco & Pannocchia, Gabriele & Tognotti, Leonardo & Paci, Marco & Bonciani, Roberto, 2020. "A rigorous simulation model of geothermal power plants for emission control," Applied Energy, Elsevier, vol. 263(C).
    18. Bao, Junjiang & Zhao, Li, 2012. "Exergy analysis and parameter study on a novel auto-cascade Rankine cycle," Energy, Elsevier, vol. 48(1), pages 539-547.
    19. Coskun, C. & Oktay, Z. & Dincer, I., 2011. "Modified exergoeconomic modeling of geothermal power plants," Energy, Elsevier, vol. 36(11), pages 6358-6366.
    20. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Evaluation of geothermal heating from abandoned oil wells," Energy, Elsevier, vol. 142(C), pages 592-607.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2495-:d:358809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.